Read: Lax, Appendix 15, pages 363-366.

1. Let $X \subset \mathbb{R}[x]$ be the space of polynomials of degree $<n$ and consider the linear map

$$
D: X \longrightarrow X, \quad f \longmapsto \frac{d f}{d x} .
$$

Find the eigenvalues of D, and then find a basis f_{0}, \ldots, f_{n-1} of X consisting of generalized eigenvectors of D so that the matrix J with respect to this basis is in Jordan canonical form. Write down J.
2. Let A be a 7×7 matrix over \mathbb{C} with minimal polynomial $m(t)=(t-1)^{3}(t-2)^{2}$.
(a) List all possible Jordan canonical forms of A of to similarity.
(b) For each matrix from Part (a), find the rank of $(A-I)^{k}$ and $(A-2 I)^{k}$, for $k \in \mathbb{N}$.
3. Let A be an $n \times n$ matrix over \mathbb{C}. The matrix A is nilpotent if $A^{k}=0$ for some $k \in \mathbb{N}$.
(a) Prove that if A is nilpotent, then $A^{n}=0$.
(b) Prove that if A is nilpotent, then there is some $r \in \mathbb{N}$ and positive integers $k_{1} \geq$ $\cdots \geq k_{r}$ with $k_{1}+\cdots+k_{r}=n$ that determine A up to similarity.
(c) Suppose A and B are 6×6 nilpotent matrices with the same minimal polynomial and $\operatorname{dim} N_{A}=\operatorname{dim} N_{B}$. Prove that A and B are similar. Show by example that this can fail for 7×7 matrices.
4. Let A and B be $n \times n$ matrices over \mathbb{C}. The matrix A is idempotent if $A^{2}=A$.
(a) Prove that if $A^{k}=A$ for some integer $k>1$, then A is diagonalizable.
(b) Prove that idempotent matrices are similar if and only if they have the same trace.
(c) Prove that if A and B are idempotent and $B=U A V$ holds for some invertible maps $U, V: X \rightarrow X$, then A and B are similar.
5. Let X be an n-dimensional vector space over \mathbb{C}, and let $A, B: X \rightarrow X$ be linear maps.
(a) Prove that if $A B=B A$, then for any eigenvector v of A with eigenvalue λ, the vector $B v$ is an eigenvector of A for λ.
(b) Show that if $\left\{A_{1}, \ldots, A_{k} \mid A_{i}: X \rightarrow X\right\}$ is a set of pairwise commuting maps, then there is a nonzero $x \in X$ that is an eigenvector of every A_{i}.
(c) Suppose that A and B are both diagonalizable. Prove that $A B=B A$ if and only if they are simultaneously diagonalizable, i.e., there exists an invertible $n \times n$-matrix P such that both $P^{-1} A P$ and $P^{-1} B P$ are diagonal matrices.

