Read: Lax, Chapter 7, pages 77-100.

1. This problem is about rational canonical form. Consider the following matrix over \mathbb{R} :

$$
M=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

(a) Let e_{1}, \ldots, e_{n} be the standard basis. Show that if a polynomial $f \in \mathbb{R}[x]$ has degree less than n, then $f(M) \neq 0$. [Hint: Notice that $M e_{i}=e_{i+1}$ for $i=1, \ldots, n-1$.]
(b) Show that the minimal polynomial of M is

$$
f(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} .
$$

(c) Let X be a vector space over \mathbb{R} with basis $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and let $T: X \rightarrow X$ be a linear map such that

$$
T\left(x_{1}\right)=x_{2}, \quad T\left(x_{2}\right)=x_{3}, \quad T\left(x_{3}\right)=x_{4}, \quad T\left(x_{4}\right)=-x_{1}-4 x_{2}-6 x_{3}-4 x_{4} .
$$

Find the rational and Jordan canonical forms of T. Is T diagonalizable over \mathbb{C} ? Why or why not?
2. Given a linear map $A: X \rightarrow X$, define $f: X \rightarrow X$ by $f(x, y)=x^{T} A y$.
(a) State and prove necessary and suffcient conditions on A for f to be an inner product.
(b) Write the inner product $f(x, y)=3 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+2 x_{2} y_{2}-x_{2} y_{3}-x_{3} y_{2}+3 x_{3} y_{3}$ as $f(x, y)=x^{T} A y$.
(c) Find an orthonormal basis v_{1}, v_{2}, v_{3} of \mathbb{R}^{3} so that with respect to this basis, $f(z, w)=$ $z^{T} D w$ for some diagonal matrix D.
(d) Write a formula for $f(z, w)$ like in Part (b), but with respect to this new basis.
3. Let f and g be continuous functions on the interval $[0,1]$. Prove the following inequalities.
(a) $\left(\int_{0}^{1} f(t) g(t) d t\right)^{2} \leq \int_{0}^{1} f(t)^{2} d t \int_{0}^{1} g(t)^{2} d t$
(b) $\left(\int_{0}^{1}(f(t)+g(t))^{2} d t\right)^{1 / 2} \leq\left(\int_{0}^{1} f(t)^{2} d t\right)^{1 / 2}+\left(\int_{0}^{1} g(t)^{2} d t\right)^{1 / 2}$.
4. Prove that $\|x\|=\sup \left\{(x, y): y \in K^{n}\right.$ with $\left.\|y\|=1\right\}$.

