Read: Lax, Chapter 7, pages 89-100.

1. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $y_{1}=(1,2,1,1), y_{2}=(1,-1,0,2)$ and $y_{3}=(2,0,1,1)$.
2. Let X be the vector space of all continuous real-valued functions on $[0,1]$. Define an inner product on X by

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Let Y be the subspace of X spanned by $f_{0}, f_{1}, f_{2}, f_{3}$, where $f_{k}(x)=x^{k}$. Find an orthonormal basis for Y.
3. Let Y be a subspace of an inner product space X, and $P_{Y}: X \rightarrow X$ the orthogonal projection onto Y. Prove that $P_{Y}^{*}=P_{Y}$.
4. Let X be a finite-dimensional real inner product space. We say that a sequence $\left\{A_{n}\right\}$ of linear maps converges to a limit A if $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0$.
(a) Show that $\left\{A_{n}\right\}$ converges to A if and only if for all $x \in X, A_{n} x$ converges to $A x$.
(b) Show by example that this fails if $\operatorname{dim} X=\infty$.
5. Let $A: X \rightarrow U$ be a linear map between finite-dimensional inner product spaces, and let $A^{*}: U \rightarrow X$ denote the adjoint map. The map A has a left inverse if there is a linear map $L: U \rightarrow X$ such that $L A=I_{X}$, the identity on X. It has a right inverse if there is a linear map $R: U \rightarrow X$ such that $A R=I_{U}$ is the identity on U.
(a) Prove that $R_{A^{*}}^{\perp}=N_{A}$.
(b) Prove that A maps $R_{A^{*}}$ bijectively onto R_{A}.
(c) Show that if A has a left inverse, then $A x=u$ has at most one solution. Give a condition on u that completely characterizes when there is a solution.
(d) Show that if A has a right inverse, then $A x=u$ has at least one solution. If $A x_{p}=u$ for some particular $x_{p} \in X$, then describe all solutions for x in this case. What condition ensures that there will be only one solution?
(e) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?

