Read: Lax, Chapter 7, pages 89–100.

- 1. Let S be the cyclic shift mapping of \mathbb{C}^n , that is, $S(z_1, \ldots, z_n) = (z_n, z_1, \ldots, z_{n-1})$.
 - (a) Show that S is unitary.
 - (b) Determine the eigenvalues and eigenvectors of S.
 - (c) Find an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of S.
- 2. Let X be the space of continuous complex-valued functions on [-1, 1] and define an inner product on X by

$$(f,g) = \int_{-1}^{1} f(s)\overline{g(s)} \, ds \, .$$

Let m(s) be a continuous function of absolute value 1, that is, $|m(s)| = 1, -1 \le s \le 1$. Define M to be multiplication by m:

$$(Mf)(s) = m(s)f(s)$$
.

Show that M is unitary.

- 3. Consider the quadratic form $q(x) = 2x_1^2 + 6x_1x_2 + 2x_2^2$.
 - (a) Write this as $q(x) = x^T A x$, for some A.
 - (b) Write $A = P^T D P$, where D is a diagonal matrix and P is orthogonal with determinant 1.
 - (c) Change variables by letting $z = P^T x$. Sketch the level curve q(x) = 1 in both the $z_1 z_2$ -plane and in the $x_1 x_2$ -plane.
- 4. Let A be a linear map of a finite-dimensional complex inner product space X.
 - (a) A matrix is normal if $AA^* = A^*A$. It is unitarily similar to a diagonal matrix if $A = U^*DU$ for a diagonal matrix D and unitary matrix U. Show that these conditions are equivalent.
 - (b) Prove that if A is normal then it has a square-root, that is, a matrix B such that $A = B^2$. Is B necessarily normal? Unique?
 - (c) Suppose that A is diagonalizable. Prove that A is normal if and only if each eigenvector of A is an eigenvector of A^* .
- 5. Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A: X \to X$ maximum modulus $|\lambda|$.
 - (a) Show that $||A|| \ge |\lambda|$
 - (b) Give an explicit example of an A where equality does not hold.
 - (c) Show that if A is normal, then equality holds.