Read: Lax, Chapter 8, pages 101–120.

- 1. For any positive-definite self-adjoint mapping $M: X \to X$, define an inner product on X by $\langle x, y \rangle := (x, My)$. Throughout this problem, let $X = \mathbb{R}^2$ and $M = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.
 - (a) Find two orthonormal bases for X that contain the vector $e_1/||e_1||$, where $e_1 = (1, 0)$.
 - (b) Find two orthonormal bases for X that contain the vector $e_2/||e_2||$, where $e_2 = (0, 1)$.
 - (c) Find an vector v_2 orthogonal to $v_1 = (1, 1)$.
 - (d) Find a matrix H that is self-adjoint with respect to (,), but not with respect to \langle , \rangle .
- 2. Let $H, M: X \to X$ be self-adjoint mappings, and M positive-definite.
 - (a) Formulate and prove a necessary and sufficient condition for $M^{-1}H$ to be self-adjoint with respect to the standard inner product.
 - (b) Prove that $M^{-1}H$ is self-adjoint with respect to the inner product $\langle x, y \rangle = (x, My)$.
 - (c) Prove that if H is positive-definite, then so is $M^{-1}H$.
- 3. Let $H, M: X \to X$ be self-adjoint mappings, and M positive definite. Define

$$R_{H,M}(x) = \frac{(x, Hx)}{(x, Mx)}$$

- (a) Let $\mu = \min\{R_{H,M}(x) \mid x \in X\}$. Show that μ exists, and that the $v \in X$ for which $R_{H,M}(v) = \mu$ satisfies $Hv = \mu Mv$.
- (b) Show that the constrained minimum problem

$$\min\left\{R_{H,M}(x) \mid (x, Mv) = 0\right\}$$

has a nonzero solution $w \in X$, which satisfies $Hw = \kappa Mw$, where $\kappa = R_{H,M}(w)$.

- 4. Let $H, M: X \to X$ be self-adjoint mappings, and M positive definite.
 - (a) Show that there exists a basis v_1, \ldots, v_n of X where each v_i satisfies

$$Hv_i = \mu_i Mv_i \quad (\mu_i \text{ real}), \qquad (v_i, Mv_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- (b) Compute (v_i, Hv_j) , and show that there is an invertible matrix U for which $U^*MU = I$ and U^*HU is diagonal.
- (c) Characterize the numbers μ_1, \ldots, μ_n by a minimax principle.