Read: Lax, Chapter 8, pages 101-120.

1. For any positive-definite self-adjoint mapping $M: X \rightarrow X$, define an inner product on X by $\langle x, y\rangle:=(x, M y)$. Throughout this problem, let $X=\mathbb{R}^{2}$ and $M=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$.
(a) Find two orthonormal bases for X that contain the vector $e_{1} /\left\|e_{1}\right\|$, where $e_{1}=(1,0)$.
(b) Find two orthonormal bases for X that contain the vector $e_{2} /\left\|e_{2}\right\|$, where $e_{2}=(0,1)$.
(c) Find an vector v_{2} orthogonal to $v_{1}=(1,1)$.
(d) Find a matrix H that is self-adjoint with respect to (,), but not with respect to \langle,$\rangle .$
2. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive-definite.
(a) Formulate and prove a necessary and sufficient condition for $M^{-1} H$ to be self-adjoint with respect to the standard inner product.
(b) Prove that $M^{-1} H$ is self-adjoint with respect to the inner product $\langle x, y\rangle=(x, M y)$.
(c) Prove that if H is positive-definite, then so is $M^{-1} H$.
3. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive definite. Define

$$
R_{H, M}(x)=\frac{(x, H x)}{(x, M x)} .
$$

(a) Let $\mu=\min \left\{R_{H, M}(x) \mid x \in X\right\}$. Show that μ exists, and that the $v \in X$ for which $R_{H, M}(v)=\mu$ satisfies $H v=\mu M v$.
(b) Show that the constrained minimum problem

$$
\min \left\{R_{H, M}(x) \mid(x, M v)=0\right\}
$$

has a nonzero solution $w \in X$, which satisfies $H w=\kappa M w$, where $\kappa=R_{H, M}(w)$.
4. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive definite.
(a) Show that there exists a basis v_{1}, \ldots, v_{n} of X where each v_{i} satisfies

$$
H v_{i}=\mu_{i} M v_{i} \quad\left(\mu_{i} \text { real }\right), \quad\left(v_{i}, M v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

(b) Compute $\left(v_{i}, H v_{j}\right)$, and show that there is an invertible matrix U for which $U^{*} M U=$ I and $U^{*} H U$ is diagonal.
(c) Characterize the numbers $\mu_{1}, \ldots \mu_{n}$ by a minimax principle.

