Linear algebra fundamentals

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Fall 2020

Algebraic structures

Definition

A group is a set G and associative binary operation * with:

- **closure**: $a, b \in G$ implies $a * b \in G$;
- identity: there exists $e \in G$ such that a * e = e * a = a for all $a \in G$;
- inverses: for all $a \in G$, there is $b \in G$ such that a * b = e.

A group is abelian if a * b = b * a for all $a, b \in G$.

Definition

A field is a set \mathbb{F} (or K) containing $1 \neq 0$ with two binary operations: + (addition) and \cdot (multiplication) such that:

- (i) \mathbb{F} is an abelian group under addition;
- (ii) $\mathbb{F}\setminus\{0\}$ is an abelian group under multiplication;
- (iii) The distributive law holds: a(b+c)=ab+ac for all $a,b,c\in\mathbb{F}$.

Remarks

- $\blacksquare \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p \text{ (prime } p), \mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \text{ are all fields.}$
- \mathbb{Z} is not a field. Nor is \mathbb{Z}_n (composite n).
- the additive identity is 0, and the inverse of a is -a.
- the multiplicative identity is 1, and the inverse of a is a^{-1} , or $\frac{1}{a}$.

Vector spaces

Definition

A vector space is a set X ("vectors") over a field \mathbb{F} ("scalars") such that:

- (i) X is an abelian group under addition;
- (ii) + and \cdot are "compatible" via natural associative and distributive laws relating the two:

Intuition

Think of a vector space as a set of vectors that is:

- (i) Closed under addition and subtraction;
- (ii) Closed under scalar multiplication;
- (iii) Equipped with the "natural" associative and distributive laws.

Proposition (exercise)

In any vector space X,

- (i) The zero vector **0** is unique;
- (ii) $0x = \mathbf{0}$ for all $x \in X$;
- (iii) (-1)x = -x for all $x \in X$.

Linear maps

Definition

A linear map between vector spaces X and Y over \mathbb{F} is a function $\varphi \colon X \to Y$ satisfying:

An isomorphism is a linear map that is bijective (1–1 and onto).

Proposition

The two conditions for linearity above can be replaced by the single condition:

$$\varphi(av + bw) = a\varphi(v) + b\varphi(w),$$

for all $v, w \in X$ and $a, b \in \mathbb{F}$.

Examples of vector spaces

- (i) $K^n = \{(a_1, \dots, a_n) : a_i \in K\}$. Addition and multiplication are defined componentwise.
- (ii) Set of functions $\mathbb{R} \longrightarrow \mathbb{R}$ (with $K = \mathbb{R}$).
- (iii) Set of functions $S \longrightarrow K$ for an abitrary set S.
- (iv) Set of polynomials of degree < n, with coefficients from K.

Exercise

In the list of vector spaces above, (i) is isomorphic to (iv), and to (iii) if |S| = n.

Subspaces

Definition

A subset Y of a vector space X is a subspace if it too is a vector space.

Examples

- (i) $Y = \{(0, a_2, \dots, a_{n-1}, 0) : a_i \in K\} \subseteq K^n$.
- (ii) $Y = \{\text{functions with period } T | \pi\} \subseteq \{\text{functions } \mathbb{R} \to \mathbb{R}\}.$
- (iii) $Y = \{\text{constant functions } S \to K\} \subseteq \{\text{functions } S \to K\}.$
- (iv) $Y = \{a_0 + a_2x^2 + a_4x^4 + \dots + a_{n-1}x^{n-1} : a_i \in K\} \subseteq \{\text{polynomials of degree} < n\}.$

Definition

If Y and Z are subsets of a vector space X, then their:

- sum is $Y + Z = \{y + z \mid y \in Y, z \in Z\};$
- intersection is $Y \cap Z = \{x \mid x \in Y, x \in Z\}$.

Exercise

If Y and Z are subspaces of X, then Y + Z and $Y \cap Z$ are also subspaces.

Spanning and Independence

Definition

A linear combination of vectors x_1, \ldots, x_j is a vector of the form $a_1x_1 + \cdots + a_jx_j$, where each $a_i \in K$.

Definition

Given a subset $S \subseteq X$, the subspace spanned by S is the set of all linear combinations of vectors in S, and denoted Span(S).

Exercise

For any subset $S \subseteq X$,

$$\mathsf{Span}(S) = \bigcap_{S \subseteq Y_{\alpha} \le X} Y_{\alpha} \,,$$

where the intersection is taken over all subspaces of X that contain S.

Definition

The vectors x_1, \ldots, x_j are linearly dependent if we can write $a_1x_1 + \cdots + a_jx_j = 0$, where not all $a_i = 0$. Otherwise, the vectors are linearly independent.

Spanning, linear independence, and bases

Lemma 1.1

If $X = \operatorname{Span}(x_1, \dots, x_n)$, and the vectors $y_1, \dots, y_j \in X$ are linearly independent, then $j \leq n$.

Proof outline (details to be done on the board)

Write $y_1 = a_1x_1 + \cdots + a_nx_n$, and assume WLOG that $a_1 \neq 0$.

Now, "solve" for x_1 and eliminate it, and conclude that

$$\mathsf{Span}(x_1, x_2 \dots, x_n) = \mathsf{Span}(y_1, x_2 \dots, x_n) = X$$

Repeat this process: eliminating each x_2, x_3, \ldots Note that j > n is impossible. (Why?)

Definition

A set $B \subset X$ is a basis for X if:

- \blacksquare B spans X. (is "big enough");
- *B* is linearly independent. (isn't "too big").

Bases

Lemma 1.2

If $\operatorname{Span}(x_1,\ldots,x_n)=X$, then some subset of $\{x_1,\ldots,x_n\}$ is a basis for X.

Proof

If x_1, \ldots, x_n are linearly dependent, then we can write (WLOG; renumber of necessary)

$$x_n = a_1x_1 + \cdots + a_{n-1}x_{n-1}.$$

Now, $\operatorname{Span}(x_1,\ldots,x_{n-1})=X$, and we can repeat this process until the remaining set is linearly independent.

Definition

A vector space X is finite dimensional (f.d.) if it has a finite basis.

Examples

- (i) In \mathbb{R}^n , any two vectors that don't lie on the same line (i.e., aren't scalar multiples) are linearly independent.
- (ii) In \mathbb{R}^3 , any three vectors are linearly independent iff they do not lie on the same plane.
- (iii) Any two vectors in \mathbb{R}^2 that aren't scalar multiples form a basis.

Dimension

Theorem / Definition 1.3

All bases for a f.d. vector space have the same cardinality, called the dimension of X.

Proof

Let x_1, \ldots, x_n and y_1, \ldots, y_m be two bases for X. By Lemma 1.1, $m \le n$ and $n \le m$.

Theorem 1.4

Every linear independent set of vectors y_1, \dots, y_j in a finite-dimensional vector space X can be extended to a basis of X.

Proof

If $\operatorname{Span}(y_1,\ldots,y_j) \neq X$, then find $y_{j+1} \in X$ not in $\operatorname{Span}(y_1,\ldots,y_j)$, add it to the set and repeat the process.

This will terminate in less than $n = \dim X$ steps because otherwise, X would contain more than n linearly independent vectors.

An example from ODEs

Let X be the set of all (twice-differential) functions x(t) that satisfy the second order differential equation $\frac{d^2}{dt^2}x + x = 0$.

If $x_1(t)$, $x_2(t)$ are solutions, then so are $x_1(t) + x_2(t)$ and $cx_1(t)$. Thus X is a vector space.

Solutions describe the motion of a mass-spring system (simple harmonic motion). A particular solution is determined completely by specifying:

$$x(0) = x_0$$
 (initial position) $x'(0) = v_0$ (initial velocity).

Thus, we can describe an element $x(t) \in X$ by a pair (x_0, v_0) , where $x_0, v_0 \in \mathbb{R}$ (or in \mathbb{C}).

This defines an isomorphism $X \longrightarrow \mathbb{C}^2$, by $x(t) \longmapsto (x(0), x'(0))$.

Note that $\cos x$ and $\sin x$ are two linearly independent solutions, so the general solution to this ODE is $a\cos x + b\sin x$; $a,b \in \mathbb{C}$.

Said differently, $\{\cos x, \sin x\}$ is a basis for the solution space of x'' + x = 0.

Note that $\cos x + i \sin x = e^{ix}$ and $\cos x - i \sin x = e^{-ix}$ are linearly independent, and so $\{e^{ix}, e^{-ix}\}$ is another basis! Thus, the general solution can be written as $C_1 e^{ix} + C_2 e^{-ix}$ instead!

Complements and direct sums

Theorem 1.5

- (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional.
- (b) Every subspace Y has a complement in X: another subspace Z such that every vector $x \in X$ can be written uniquely as

$$x = y + z$$

$$y \in Y, z \in Z$$

$$x=y+z, \hspace{1cm} y\in Y, \; z\in Z, \hspace{1cm} \dim X=\dim Y+\dim Z\,.$$

Proof

Pick $y_1 \in Y$ and extend this to a basis y_1, \ldots, y_j of Y. By Lemma 1.1, $j \leq \dim X < \infty$.

Extend this to a basis $y_1, \ldots, y_j, z_{j+1}, \ldots, z_n$ of X [and define $Z := \operatorname{Span}(z_{j+1}, \ldots, z_n)$].

Clearly, Y and Z are complements, and dim $X = n = j + (n - j) = \dim Y + \dim Z$.

Definition

X is the direct sum of subspaces Y and Z that are complements of each other.

More generally, X is the direct sum of subspaces Y_1, \ldots, Y_m if every $x \in X$ can be expressed uniquely as

$$x = y_1 + \cdots + y_m, \quad y_i \in Y_i.$$

We denote this as $X = Y_1 \oplus \cdots \oplus Y_m$.

Direct products

Definition

The direct product of X_1 and X_2 is the vector space

$$X_1 \times X_2 := \{(x_1, x_2) : x_1 \in X_1, x_2 \in X_2\},\$$

with addition and multiplication defined componentwise.

Proposition

- \blacksquare dim $(Y_1 \oplus \cdots \oplus Y_m) = \sum_{i=1}^m \dim Y_i;$
- $dim(X_1 \times \cdots \times X_m) = \sum_{i=1}^m \dim X_i.$

Example

Let
$$X = \mathbb{R}^4$$
, $Y_1 = \{(a, b, 0, 0) : a, b \in \mathbb{R}\}$, $Y_2 = \{(0, 0, c, d) : c, d \in \mathbb{R}\}$, $X_1 = X_2 = \mathbb{R}^2$

Clearly,
$$X = Y_1 \oplus Y_2$$
, since $(a, b, c, d) = (a, b, 0, 0) + (0, 0, c, d)$ [uniquely].

$$X_1 \times X_2 = \left\{ ((a,b),(c,d)) : (a,b) \in \mathbb{R}^2, (c,d) \in \mathbb{R}^2 \right\} \cong \left\{ (a,b,c,d) : a,b,c,d \in \mathbb{R} \right\} = X.$$

Direct sums vs. direct products

In the finite-dimensional cases, there is no difference (up to isomorphism) of direct sums vs. direct products.

Not the case when dim $X = \infty$. Consider the vector space:

$$X = \mathbb{R}^{\infty} := \{(a_1, a_2, a_3, \dots) : a_i \in \mathbb{R}\} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \dots$$

and the following subspaces:

$$X_1 = \{(a_1, 0, 0, 0, \dots,) : a_1 \in \mathbb{R}\}, \qquad X_2 = \{(0, a_2, 0, 0, \dots,) : a_2 \in \mathbb{R}\}, \qquad \text{and so on.}$$

Elements in the subspace $X_1 \oplus X_2 \oplus X_3 \oplus \cdots$ of X are finite sums

$$x = x_{i_1} + x_{i_2} + \cdots + x_{i_k}, \quad x_{i_j} \in X_{i_j}.$$

Thus, we can write the direct sum as follows:

$$X_1 \oplus X_2 \oplus X_3 \oplus \cdots = \big\{ (a_1, \ldots, a_k, 0, 0, \ldots) : a_i \in \mathbb{R}, \ k \in \mathbb{Z} \big\} \subsetneq \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots$$

- Elements in the direct product are sequences, e.g., x = (1, 1, 1, ...).
- Elements in the direct sum are finite sums, e.g., $x = 3e_1 5.25e_4 + 78e_{11}$.

Congruence of subspaces

Sums and products "multiply" vector spaces. We can also "divide" by a subspace.

Definition

If Y is a subspace of X, then two vectors $x_1, x_2 \in X$ are congruent modulo Y, denoted $x_1 \equiv x_2 \pmod{Y}$, if $x_1 - x_2 \in Y$.

Proposition (exercise)

Congruence modulo Y is an equivalence relation, i.e., it is:

- (i) **symmetric**: $x \equiv y$ imples $y \equiv x$;
- (ii) **reflexive**: $x \equiv x$ for all $x \in X$;
- (iii) transitive: $x \equiv y$ and $y \equiv z$ implies $x \equiv z$.

The equivalence classes are called congruence classes mod Y, or cosets. Denote the class containing x by $\{x\}$. [Sometimes written \overline{x} or $x + Y := \{x + y : y \in Y\}$.]

Example

Let
$$X=\mathbb{R}^3$$
, $Y=\{(x,y,0):x,y\in\mathbb{R}\}=$ xy-plane, $Z=\{(0,0,z):z\in\mathbb{R}\}=$ z-axis.

- $v \equiv w \mod Y$ if they lie on the same horizontal plane.
- $v \equiv w \mod Z$ if they lie on the same vertical line.

Quotient spaces

Let X/Y denote the set of equivalence classes in X, modulo Y.

This can be made into a vector space by defining addition and scalar multiplication as follows:

$$\{x\} + \{z\} := \{x + z\}, \qquad a\{x\} := \{ax\}.$$

Need to check that this is well-defined, i.e., that it is independent of the choice of representative from the classes.

This means showing (HW exercise) that if $x_1 \equiv x_2 \mod Y$ and $z_1 \equiv z_2 \mod Y$, then

$${x_1} + {z_1} = {x_2} + {z_2},$$
 $a{x_1} = a{x_2}.$

Definition

The vector space X/Y is called the quotient space of X modulo Y.

Alternate notations

Since $\{x\}$ is sometimes written \overline{x} , or $x+Y:=\{x+y:y\in Y\}$, then addition and multiplication becomes:

$$\overline{x} + \overline{z} = \overline{x + z}$$
, and $a\overline{x} = \overline{ax}$;

$$(x + Y) + (z + Y) = x + z + Y$$
, and $a(x + Y) = ax + Y$.

Dimension of quotient spaces

Theorem 1.6

If Y is a subspace of a finite-dimensional vector space X, then $\dim Y + \dim X/Y = \dim X$.

Proof

Let y_1, \ldots, y_j be a basis for Y. Extend this to a basis $y_1, \ldots, y_j, x_{j+1}, \ldots, x_n$ of X.

Claim: $\{x_{j+1}\}, \ldots, \{x_n\}$ is a basis of X/Y.

■ Show this spans X/Y:

Pick $\{x\}$ in X/Y and write $x = \sum_{i=1}^{j} a_i y_i + \sum_{k=j+1}^{n} b_k x_k$. By definition,

$$\{x\} = \left\{ \sum a_i y_i + \sum b_k x_k \right\} = \sum a_i \{y_i\} + \sum b_k \{x_k\} = \sum b_k \{x_k\}.$$

■ Show this is linearly independent:

Suppose $\sum_{k=j+1}^{n} c_k \{x_k\} = \{0\}$, which means $\sum c_k x_k = y$ for some $y \in Y$.

Write $y = \sum_{i=1}^{j} d_i y_i$, and so $\sum c_k x_k - \sum d_i y_i = 0$, and hence all $c_k, d_i = 0$ (Why?). \Box

Corollary

If a subspace Y of a finite-dimensional space X has dim $Y = \dim X$, then Y = X.

Dimension of sums

Theorem 1.7

Let U, V be subspaces of a finite-dimensional space X with U + V = X. Then

$$\dim X = \dim U + \dim V - \dim(U \cap V).$$

Proof

Let $W = U \cap V$. The result trivially holds when $W = \{0\}$ (Theorem 1.5).

Define $\overline{U} = U/W$, $\overline{V} = V/W$ and $\overline{X} = X/W$.

Note that $\overline{U} \cap \overline{V} = \{0\}$ (why?), and $\overline{X} = \overline{U} + \overline{V}$, and so $\dim \overline{X} = \dim \overline{U} + \dim \overline{V}$ (Theorem 1.5).

By Theorem 1.6: $\dim \overline{X} = \dim X - \dim W$ $\dim \overline{U} = \dim U - \dim W$ $\dim \overline{V} = \dim V - \dim W$

Therefore, $(\dim X - \dim W) = (\dim U - \dim W) + (\dim V - \dim W)$.

From which it easily follows that $\dim X = \dim U + \dim V - \dim W$.