Linear algebra fundamentals

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Fall 2020

Algebraic structures

Definition

A group is a set G and associative binary operation $*$ with:

- closure: $a, b \in G$ implies $a * b \in G$;
- identity: there exists $e \in G$ such that $a * e=e * a=a$ for all $a \in G$;
- inverses: for all $a \in G$, there is $b \in G$ such that $a * b=e$.

A group is abelian if $a * b=b * a$ for all $a, b \in G$.

Definition

A field is a set \mathbb{F} (or K) containing $1 \neq 0$ with two binary operations: + (addition) and . (multiplication) such that:
(i) \mathbb{F} is an abelian group under addition;
(ii) $\mathbb{F} \backslash\{0\}$ is an abelian group under multiplication;
(iii) The distributive law holds: $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

Remarks

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ (prime p), $\mathbb{Q}(\sqrt{2}):=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ are all fields.
$-\mathbb{Z}$ is not a field. Nor is \mathbb{Z}_{n} (composite n).
- the additive identity is 0 , and the inverse of a is $-a$.
- the multiplicative identity is 1 , and the inverse of a is a^{-1}, or $\frac{1}{a}$.

Vector spaces

Definition

A vector space is a set X ("vectors") over a field \mathbb{F} ("scalars") such that:
(i) X is an abelian group under addition;
(ii) + and \cdot are "compatible" via natural associative and distributive laws relating the two:

- $a(b v)=(a b) v$, for all $a, b \in \mathbb{F}, v \in X$;
- $a(v+w)=a v+a w$, for all $a \in \mathbb{F}, v, w \in X$;
- $(a+b) v=a v+b v$, for all $a \in \mathbb{F}, v, w \in X$;
- $1 v=v$, for all $v \in X$.

Intuition

Think of a vector space as a set of vectors that is:
(i) Closed under addition and subtraction;
(ii) Closed under scalar multiplication;
(iii) Equipped with the "natural" associative and distributive laws.

Proposition (exercise)

In any vector space X,
(i) The zero vector $\mathbf{0}$ is unique;
(ii) $0 x=\mathbf{0}$ for all $x \in X$;
(iii) $(-1) x=-x$ for all $x \in X$.

Linear maps

Definition

A linear map between vector spaces X and Y over \mathbb{F} is a function $\varphi: X \rightarrow Y$ satisfying:

- $\varphi(v+w)=\varphi(v)+\varphi(w)$,
- $\varphi(a v)=a \varphi(v)$, for all $v, w \in X$; for all $a \in \mathbb{F}, v \in X$.

An isomorphism is a linear map that is bijective ($1-1$ and onto).

Proposition

The two conditions for linearity above can be replaced by the single condition:

$$
\varphi(a v+b w)=a \varphi(v)+b \varphi(w), \quad \text { for all } v, w \in X \text { and } a, b \in \mathbb{F}
$$

Examples of vector spaces

(i) $K^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in K\right\}$. Addition and multiplication are defined componentwise.
(ii) Set of functions $\mathbb{R} \longrightarrow \mathbb{R}$ (with $K=\mathbb{R}$).
(iii) Set of functions $S \longrightarrow K$ for an abitrary set S.
(iv) Set of polynomials of degree $<n$, with coefficients from K.

Exercise

In the list of vector spaces above, (i) is isomorphic to (iv), and to (iii) if $|S|=n$.

Subspaces

Definition

A subset Y of a vector space X is a subspace if it too is a vector space.

Examples

(i) $Y=\left\{\left(0, a_{2}, \ldots, a_{n-1}, 0\right): a_{i} \in K\right\} \subseteq K^{n}$.
(ii) $Y=\{$ functions with period $T \mid \pi\} \subseteq\{$ functions $\mathbb{R} \rightarrow \mathbb{R}\}$.
(iii) $Y=\{$ constant functions $S \rightarrow K\} \subseteq\{$ functions $S \rightarrow K\}$.
(iv) $Y=\left\{a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-1} x^{n-1}: a_{i} \in K\right\} \subseteq\{$ polynomials of degree $<n\}$.

Definition

If Y and Z are subsets of a vector space X, then their:

- sum is $Y+Z=\{y+z \mid y \in Y, z \in Z\}$;
- intersection is $Y \cap Z=\{x \mid x \in Y, x \in Z\}$.

Exercise

If Y and Z are subspaces of X, then $Y+Z$ and $Y \cap Z$ are also subspaces.

Spanning and Independence

Definition

A linear combination of vectors x_{1}, \ldots, x_{j} is a vector of the form $a_{1} x_{1}+\cdots+a_{j} x_{j}$, where each $a_{i} \in K$.

Definition

Given a subset $S \subseteq X$, the subspace spanned by S is the set of all linear combinations of vectors in S, and denoted $\operatorname{Span}(S)$.

Exercise

For any subset $S \subseteq X$,

$$
\operatorname{Span}(S)=\bigcap_{S \subseteq Y_{\alpha} \leq X} Y_{\alpha},
$$

where the intersection is taken over all subspaces of X that contain S.

Definition

The vectors x_{1}, \ldots, x_{j} are linearly dependent if we can write $a_{1} x_{1}+\cdots a_{j} x_{j}=0$, where not all $a_{i}=0$. Otherwise, the vectors are linearly independent.

Spanning, linear independence, and bases

Lemma 1.1

If $X=\operatorname{Span}\left(x_{1}, \ldots, x_{n}\right)$, and the vectors $y_{1}, \ldots, y_{j} \in X$ are linearly independent, then $j \leq n$.

Proof outline (details to be done on the board)

Write $y_{1}=a_{1} x_{1}+\cdots+a_{n} x_{n}$, and assume WLOG that $a_{1} \neq 0$.
Now, "solve" for x_{1} and eliminate it, and conclude that

$$
\operatorname{Span}\left(x_{1}, x_{2} \ldots, x_{n}\right)=\operatorname{Span}\left(y_{1}, x_{2} \ldots, x_{n}\right)=X
$$

Repeat this process: eliminating each x_{2}, x_{3}, \ldots Note that $j>n$ is impossible. (Why?)

Definition

A set $B \subset X$ is a basis for X if:

- B spans X. (is "big enough");
- B is linearly independent. (isn't "too big").

Bases

Lemma 1.2

If $\operatorname{Span}\left(x_{1}, \ldots, x_{n}\right)=X$, then some subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for X.

Proof

If x_{1}, \ldots, x_{n} are linearly dependent, then we can write (WLOG; renumber of necessary)

$$
x_{n}=a_{1} x_{1}+\cdots+a_{n-1} x_{n-1} .
$$

Now, $\operatorname{Span}\left(x_{1}, \ldots, x_{n-1}\right)=X$, and we can repeat this process until the remaining set is linearly independent.

Definition

A vector space X is finite dimensional (f.d.) if it has a finite basis.

Examples

(i) In \mathbb{R}^{n}, any two vectors that don't lie on the same line (i.e., aren't scalar multiples) are linearly independent.
(ii) $\ln \mathbb{R}^{3}$, any three vectors are linearly independent iff they do not lie on the same plane.
(iii) Any two vectors in \mathbb{R}^{2} that aren't scalar multiples form a basis.

Dimension

Theorem / Definition 1.3

All bases for a f.d. vector space have the same cardinality, called the dimension of X.

Proof

Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} be two bases for X. By Lemma 1.1, $m \leq n$ and $n \leq m$.

Theorem 1.4

Every linear independent set of vectors y_{1}, \ldots, y_{j} in a finite-dimensional vector space X can be extended to a basis of X.

Proof

If $\operatorname{Span}\left(y_{1}, \ldots, y_{j}\right) \neq X$, then find $y_{j+1} \in X$ not in $\operatorname{Span}\left(y_{1}, \ldots, y_{j}\right)$, add it to the set and repeat the process.

This will terminate in less than $n=\operatorname{dim} X$ steps because otherwise, X would contain more than n linearly independent vectors.

An example from ODEs

Let X be the set of all (twice-differential) functions $x(t)$ that satisfy the second order differential equation $\frac{d^{2}}{d t^{2}} x+x=0$.

If $x_{1}(t), x_{2}(t)$ are solutions, then so are $x_{1}(t)+x_{2}(t)$ and $c x_{1}(t)$. Thus X is a vector space.
Solutions describe the motion of a mass-spring system (simple harmonic motion). A particular solution is determined completely by specifying:

$$
\left.x(0)=x_{0} \quad \text { (initial position }\right) \quad x^{\prime}(0)=v_{0} \quad \text { (initial velocity) }
$$

Thus, we can describe an element $x(t) \in X$ by a pair $\left(x_{0}, v_{0}\right)$, where $x_{0}, v_{0} \in \mathbb{R}$ (or in \mathbb{C}).
This defines an isomorphism $X \longrightarrow \mathbb{C}^{2}$, by $x(t) \longmapsto\left(x(0), x^{\prime}(0)\right)$.

Note that $\cos x$ and $\sin x$ are two linearly independent solutions, so the general solution to this ODE is $a \cos x+b \sin x ; a, b \in \mathbb{C}$.

Said differently, $\{\cos x, \sin x\}$ is a basis for the solution space of $x^{\prime \prime}+x=0$.

Note that $\cos x+i \sin x=e^{i x}$ and $\cos x-i \sin x=e^{-i x}$ are linearly independent, and so $\left\{e^{i x}, e^{-i x}\right\}$ is another basis! Thus, the general solution can be written as $C_{1} e^{i x}+C_{2} e^{-i x}$ instead!

Complements and direct sums

Theorem 1.5

(a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional.
(b) Every subspace Y has a complement in X : another subspace Z such that every vector $x \in X$ can be written uniquely as

$$
x=y+z, \quad y \in Y, z \in Z, \quad \operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} Z
$$

Proof

Pick $y_{1} \in Y$ and extend this to a basis y_{1}, \ldots, y_{j} of Y. By Lemma 1.1, $j \leq \operatorname{dim} X<\infty$.
Extend this to a basis $y_{1}, \ldots, y_{j}, z_{j+1}, \ldots, z_{n}$ of X [and define $\left.Z:=\operatorname{Span}\left(z_{j+1}, \ldots, z_{n}\right)\right]$.
Clearly, Y and Z are complements, and $\operatorname{dim} X=n=j+(n-j)=\operatorname{dim} Y+\operatorname{dim} Z$.

Definition

X is the direct sum of subspaces Y and Z that are complements of each other.
More generally, X is the direct sum of subspaces Y_{1}, \ldots, Y_{m} if every $x \in X$ can be expressed uniquely as

$$
x=y_{1}+\cdots+y_{m}, \quad y_{i} \in Y_{i} .
$$

We denote this as $X=Y_{1} \oplus \cdots \oplus Y_{m}$.

Direct products

Definition

The direct product of X_{1} and X_{2} is the vector space

$$
X_{1} \times X_{2}:=\left\{\left(x_{1}, x_{2}\right): x_{1} \in X_{1}, x_{2} \in X_{2}\right\},
$$

with addition and multiplication defined componentwise.

Proposition

- $\operatorname{dim}\left(Y_{1} \oplus \cdots \oplus Y_{m}\right)=\sum_{i=1}^{m} \operatorname{dim} Y_{i} ;$
- $\operatorname{dim}\left(X_{1} \times \cdots \times X_{m}\right)=\sum_{i=1}^{m} \operatorname{dim} X_{i}$.

Example

Let $X=\mathbb{R}^{4}, \quad Y_{1}=\{(a, b, 0,0): a, b \in \mathbb{R}\}, \quad Y_{2}=\{(0,0, c, d): c, d \in \mathbb{R}\}, \quad X_{1}=X_{2}=\mathbb{R}^{2}$.

Clearly, $X=Y_{1} \oplus Y_{2}$, since $(a, b, c, d)=(a, b, 0,0)+(0,0, c, d) \quad$ [uniquely].

$$
X_{1} \times X_{2}=\left\{((a, b),(c, d)):(a, b) \in \mathbb{R}^{2},(c, d) \in \mathbb{R}^{2}\right\} \cong\{(a, b, c, d): a, b, c, d \in \mathbb{R}\}=X
$$

Direct sums vs. direct products

In the finite-dimensional cases, there is no difference (up to isomorphism) of direct sums vs. direct products.

Not the case when $\operatorname{dim} X=\infty$. Consider the vector space:

$$
X=\mathbb{R}^{\infty}:=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in \mathbb{R}\right\} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

and the following subspaces:

$$
X_{1}=\left\{\left(a_{1}, 0,0,0, \ldots,\right): a_{1} \in \mathbb{R}\right\}, \quad X_{2}=\left\{\left(0, a_{2}, 0,0, \ldots,\right): a_{2} \in \mathbb{R}\right\}, \quad \text { and so on. }
$$

Elements in the subspace $X_{1} \oplus X_{2} \oplus X_{3} \oplus \cdots$ of X are finite sums

$$
x=x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}}, \quad x_{i_{j}} \in X_{i_{j}}
$$

Thus, we can write the direct sum as follows:

$$
X_{1} \oplus X_{2} \oplus X_{3} \oplus \cdots=\left\{\left(a_{1}, \ldots, a_{k}, 0,0, \ldots\right): a_{i} \in \mathbb{R}, k \in \mathbb{Z}\right\} \subsetneq \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

- Elements in the direct product are sequences, e.g., $x=(1,1,1, \ldots)$.

■ Elements in the direct sum are finite sums, e.g., $x=3 e_{1}-5.25 e_{4}+78 e_{11}$.

Congruence of subspaces

Sums and products "multiply" vector spaces. We can also "divide" by a subspace.

Definition

If Y is a subspace of X, then two vectors $x_{1}, x_{2} \in X$ are congruent modulo Y, denoted $x_{1} \equiv x_{2}(\bmod Y)$, if $x_{1}-x_{2} \in Y$.

Proposition (exercise)

Congruence modulo Y is an equivalence relation, i.e., it is:
(i) symmetric: $x \equiv y$ imples $y \equiv x$;
(ii) reflexive: $x \equiv x$ for all $x \in X$;
(iii) transitive: $x \equiv y$ and $y \equiv z$ implies $x \equiv z$.

The equivalence classes are called congruence classes mod Y, or cosets. Denote the class containing x by $\{x\}$. [Sometimes written \bar{x} or $x+Y:=\{x+y: y \in Y\}$.]

Example

Let $X=\mathbb{R}^{3}, \quad Y=\{(x, y, 0): x, y \in \mathbb{R}\}=x y$-plane, $\quad Z=\{(0,0, z): z \in \mathbb{R}\}=z$-axis.

- $v \equiv w \bmod Y$ if they lie on the same horizontal plane.
- $v \equiv w \bmod Z$ if they lie on the same vertical line.

Quotient spaces

Let X / Y denote the set of equivalence classes in X, modulo Y.

This can be made into a vector space by defining addition and scalar multiplication as follows:

$$
\{x\}+\{z\}:=\{x+z\}, \quad a\{x\}:=\{a x\}
$$

Need to check that this is well-defined, i.e., that it is independent of the choice of representative from the classes.

This means showing (HW exercise) that if $x_{1} \equiv x_{2} \bmod Y$ and $z_{1} \equiv z_{2} \bmod Y$, then

$$
\left\{x_{1}\right\}+\left\{z_{1}\right\}=\left\{x_{2}\right\}+\left\{z_{2}\right\}, \quad a\left\{x_{1}\right\}=a\left\{x_{2}\right\}
$$

Definition

The vector space X / Y is called the quotient space of X modulo Y.

Alternate notations

Since $\{x\}$ is sometimes written \bar{x}, or $x+Y:=\{x+y: y \in Y\}$, then addition and multiplication becomes:

■ $\bar{x}+\bar{z}=\overline{x+z}, \quad$ and $\quad a \bar{x}=\overline{a x} ;$
$\square(x+Y)+(z+Y)=x+z+Y, \quad$ and $\quad a(x+Y)=a x+Y$.

Dimension of quotient spaces

Theorem 1.6

If Y is a subspace of a finite-dimensional vector space X, then $\operatorname{dim} Y+\operatorname{dim} X / Y=\operatorname{dim} X$.

Proof

Let y_{1}, \ldots, y_{j} be a basis for Y. Extend this to a basis $y_{1}, \ldots, y_{j}, x_{j+1}, \ldots, x_{n}$ of X.
Claim: $\left\{x_{j+1}\right\}, \ldots,\left\{x_{n}\right\}$ is a basis of X / Y.

- Show this spans X / Y :

Pick $\{x\}$ in X / Y and write $x=\sum_{i=1}^{j} a_{i} y_{i}+\sum_{k=j+1}^{n} b_{k} x_{k}$. By definition,

$$
\{x\}=\left\{\sum a_{i} y_{i}+\sum b_{k} x_{k}\right\}=\sum a_{i}\left\{y_{i}\right\}+\sum b_{k}\left\{x_{k}\right\}=\sum b_{k}\left\{x_{k}\right\}
$$

- Show this is linearly independent:

Suppose $\sum_{k=j+1}^{n} c_{k}\left\{x_{k}\right\}=\{0\}$, which means $\sum c_{k} x_{k}=y$ for some $y \in Y$.
Write $y=\sum_{i=1}^{j} d_{i} y_{i}$, and so $\sum c_{k} x_{k}-\sum d_{i} y_{i}=0$, and hence all $c_{k}, d_{i}=0$ (Why?).

Corollary

If a subspace Y of a finite-dimensional space X has $\operatorname{dim} Y=\operatorname{dim} X$, then $Y=X$.

Dimension of sums

Theorem 1.7

Let U, V be subspaces of a finite-dimensional space X with $U+V=X$. Then

$$
\operatorname{dim} X=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)
$$

Proof

Let $W=U \cap V$. The result trivially holds when $W=\{0\}$ (Theorem 1.5).
Define $\bar{U}=U / W, \bar{V}=V / W$ and $\bar{X}=X / W$.
Note that $\bar{U} \cap \bar{V}=\{0\}$ (why?), and $\bar{X}=\bar{U}+\bar{V}$, and so $\operatorname{dim} \bar{X}=\operatorname{dim} \bar{U}+\operatorname{dim} \bar{V}$ (Theorem 1.5).

By Theorem 1.6: $\quad \operatorname{dim} \bar{X}=\operatorname{dim} X-\operatorname{dim} W$ $\operatorname{dim} \bar{U}=\operatorname{dim} U-\operatorname{dim} W$ $\operatorname{dim} \bar{V}=\operatorname{dim} V-\operatorname{dim} W$

Therefore, $(\operatorname{dim} X-\operatorname{dim} W)=(\operatorname{dim} U-\operatorname{dim} W)+(\operatorname{dim} V-\operatorname{dim} W)$.
From which it easily follows that $\operatorname{dim} X=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} W$.

