Linear maps

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Fall 2020

Preliminaries

Goal

Abstract the concept of a matrix as a linear mapping between vector spaces.
Advantages:

- simple, transparent proofs;
- better handles infinite dimensional spaces.

Definition

A linear map (or mapping, transformation, or operator) between vector spaces X and U over K is a function $T: X \rightarrow U$ that is:
(i) additive: $T(x+y)=T(x)+T(y)$, for all $x, y \in X$;
(ii) homogeneous: $T(a x)=a T(x)$, for all $x \in X, a \in K$.

The domain space is X and the target space is U.

Usually we'll write $T x$ for $T(x)$, and so the additive property is just the distributive law:

$$
T(x+y)=T x+T y
$$

Examples of linear maps

Examples

(i) Any isomorphism;
(ii) $X=U=\{$ polynomials of degree $<n$ in s $\}, \quad T=\frac{d}{d s}$.
(iii) $X=U=\mathbb{R}^{2}, \quad T=$ rotation about the origin.
(iv) X any vector space, $U=K$ (1-dimensional), T any $\ell \in X^{\prime}$.
(v) $X=U=C_{0}(\mathbb{R}), \quad(T f)(x)=\int_{-1}^{1} f(y)(x-y)^{2} d y$.
(vi) $X=\mathbb{R}^{n}, U=\mathbb{R}^{m}, u=T x$, where $u_{i}=\sum_{j=1}^{n} t_{i j} x_{j}, \quad i=1, \ldots, m$.
(vii) $X=U=\{$ piecewise cont. $[0, \infty) \rightarrow \mathbb{R}$ of "exponential order" $\}$, $(T f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$. "Laplace transform"
(viii) $X=U=\left\{\right.$ functions with $\left.\int_{-\infty}^{\infty}|f(x)| d x<\infty\right\}$, $(T f)(\xi)=\int_{-\infty}^{\infty} f(x) e^{i \xi x} d x$. "Fourier transform"

Basic properties

Theorem 3.1

Let $T: X \rightarrow U$ be a linear map.
(a) The image of a subspace of X is a subspace of U.
(b) The preimage of a subspace U is a subspace of X.
(Proof is a HW exercise.)

Definition

The range of T is the image $R_{T}:=T(X)$. The rank of T is $\operatorname{dim} R_{T}$.

The nullspace of T is the preimage of 0 :

$$
N_{T}:=T^{-1}(0)=\{x \in X: T x=0\} .
$$

The nullity of T is $\operatorname{dim} N_{T}$.

Rank-nullity theorem

Theorem 3.2

Let $T: X \rightarrow U$ be a linear map. Then $\operatorname{dim} N_{T}+\operatorname{dim} R_{T}=\operatorname{dim} X$.

Proof

Since T maps N_{T} to 0 , then $T x_{1}=T x_{2}$ if $x_{1} \equiv x_{2} \bmod N_{T}$.
Thus, T extends to a well-defined map on the quotient space X / N_{T} :

$$
T: X / N_{T} \longrightarrow U, \quad T\{x\}=T_{x}
$$

Note that this map is $1-1$, and so $\operatorname{dim}\left(X / N_{T}\right)=\operatorname{dim} R_{T}$.
Therefore, $\operatorname{dim} X=\operatorname{dim} N_{T}+\operatorname{dim} X / N_{T}=\operatorname{dim} N_{T}+\operatorname{dim} R_{T}$.

Consequences of the rank-nullity theorem

Corollary A

Suppose $\operatorname{dim} U<\operatorname{dim} X$. Then $T x=0$ for some $x \neq 0$.

Proof

We have $\operatorname{dim} R_{T} \leq \operatorname{dim} U<\operatorname{dim} X$, so by the R-N Theorem, $\operatorname{dim} N_{T}>0$.
Thus, there is some nonzero $x \in N_{T}$.

Example A

Take $X=\mathbb{R}^{n}, U=\mathbb{R}^{m}$, with $m<n$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be any linear map (see Example (vi)).

Since $m=\operatorname{dim} U<\operatorname{dim} X<n$, Corollary A implies that the system of m equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=0 \quad i=1, \ldots, m
$$

has a non-trivial solution, i.e., not all $x_{j}=0$.

Consequences of the rank-nullity theorem

Corollary B

Suppose $\operatorname{dim} X=\operatorname{dim} U$ and the only vector satisfying $T x=0$ is $x=0$. Then $R_{T}=U$.

Proof

We have $N_{T}=\{0\}$, which means that $\operatorname{dim} N_{T}=0$.
Clearly, $R_{T} \leq U$ ["is a subspace of"]. We just need to show they have the same dimension.
By the R-N Theorem, $\operatorname{dim} U=\operatorname{dim} X=\operatorname{dim} R_{N}+\operatorname{dim} N_{T}=\operatorname{dim} R_{N}$.

Example B

Take $X=U=\mathbb{R}^{n}$, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\sum_{j=1}^{n} t_{i j} x_{j}=u_{i}$, for $i=1, \ldots, n$.
If the related homogeneous system of equations $\sum_{j=1}^{n} t_{i j} x_{j}=0$, for $i=1, \ldots, n$, has only the trivial solution $x_{1}=\cdots x_{n}=0$, then the inhomogeneous system T has a unique solution for all $u_{1} \ldots, x_{n}$.
[Reason: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism.]

Applications of the rank-nullity theorem

Application 1: Polynomial interpolation

Take $X=\{p \in \mathbb{C}[x]: \operatorname{deg} p<n\}, U=\mathbb{C}^{n}$, and let $s_{1}, \ldots, s_{n} \in \mathbb{C}$ all be distinct. Define

$$
T: X \rightarrow U, \quad T p=\left(p\left(s_{1}\right), \ldots, p\left(s_{n}\right)\right)
$$

Suppose $T p=0$ for some $p \in X$. Then $p\left(s_{1}\right)=\cdots=p\left(s_{n}\right)=0$, which is impossible because p has at most $n-1$ distinct roots.

Therefore $N_{T}=\{0\}$, and so Corollary B implies that $R_{T}=U$.

Application 2: Average values of polynomials

Let $X=\{p \in \mathbb{R}[x]: \operatorname{deg} p<n\}, U=\mathbb{R}^{n}$, and I_{1}, \ldots, I_{n} be pairwise disjoint intervals on \mathbb{R}.
The average value of p over l_{j} is the integral

$$
\overline{p_{j}}:=\frac{1}{\left|I_{j}\right|} \int_{I_{j}} p(s) d s .
$$

Define $T: X \rightarrow U$ by $T p=\left(\overline{p_{1}}, \ldots, \overline{p_{n}}\right)$.
Suppose $T p=0$. Then $\overline{p_{j}}=0$ for all j, and so p (if nonzero) must change sign in l_{j}.
But this would imply that p has n distinct roots, which is impossible.
Thus, $N_{T}=\{0\}$, and so $R_{T}=U$.

Application to numerical analysis

Application 3: Numerical solutions to Laplace's equation

Laplace's equation is $\Delta u=u_{x x}+u_{y y}=0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is a linear operator.
Solutions to Laplace's PDE ("harmonic functions") are the functions in the nullspace of Δ.
If we fix the value of u on the boundary of a region $G \subset \mathbb{R}^{2}$, the solution to the boundary value problem $\Delta u=0$ is as "flat as possible". [Think: plastic wrap stretched around ∂G.]

This models steady-state solutions to the heat equation PDE: $u_{t}=\Delta u$.
The finite difference method is a way to solve $\Delta u=0$ numerically, using a square lattice with mesh spacing $h>0$.

At a fixed lattice point O, let u_{0} be the value of u at O, and $u_{W}, u_{E}, u_{N}, u_{S}$ be the values at the neighbors.

We can approxmiate the derivatives with centered differences:

$$
u_{x x} \approx \frac{u_{W}-2 u_{0}+u_{E}}{h^{2}}, \quad u_{y y} \approx \frac{u_{N}-2 u_{0}+u_{S}}{h^{2}}
$$

Plugging this back into $\Delta u=0$ gives $u_{0}=\frac{u_{W}+u_{N}+u_{E}+u_{S}}{4}$, i.e., u_{0} is the average of its four neighbors.

Application to numerical analysis (cont.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace's equation

$$
\Delta u=0,\left.\quad u\right|_{\partial G}=f(x, y) \neq 0
$$

Claim

The homogeneous equation: $\Delta u=0$, where $u=0$ on ∂G, has only the trivial solution $u_{0}=0$ for all $(x, y) \in G$.

Proof

Let \hat{O} be the lattice point at which u achieves its maximum value.
Since $u_{0}=\frac{u_{W}+u_{N}+u_{E}+u_{S}}{4}$, then $u_{0}=u_{W}=u_{N}=u_{E}=u_{S}$.
Repeating this, we see that all lattice points take the same value for u, and so $u=0$.
By the result in Example B, the related inhomogenous system for $\Delta u=0$, with arbitrary (non-zero) boundary conditions has a unique solution.

Algebra of linear mappings

Definition

Let $S, T: X \rightarrow U$ be linear maps. Define

- $T+S$ by $(T+S)(x)=T x+S x$ for each $x \in X$.
- $a T$ by $(a T)(x)=T(a x)$ for each $x \in X, a \in K$.

Easy fact

The set of linear maps from $X \rightarrow U$, denoted $\mathscr{L}(X, U)$, or $\operatorname{Hom}(X, U)$, is a vector space.

Theorem 3.3 (HW exercise)

If $T: X \rightarrow U$ and $S: U \rightarrow V$ are linear maps, then so is $(S \circ T): X \rightarrow V$.
Moreover, composition is distributive w.r.t. addition. That is, if $P, T: X \rightarrow U$ and $R, S: U \rightarrow V$, then

$$
(R+S) \circ T=R \circ T+S \circ T, \quad S \circ(T+P)=S \circ T+S \circ P .
$$

Remarks

- We usually just write $S \circ T$ as just $S T$.
- In general, $S T \neq T S$ (note that $T S$ may not even be defined).

Invertibility

Definition

A linear map T is invertible if it is $1-1$ and onto (i.e., if it is an isomorphism). Denote the inverse by T^{-1}.

Exercise

If T is invertible, then $T T^{-1}$ is the identity.

Theorem 3.4 (exercise)

Let $T: X \rightarrow U$ be linear.
(i) If T is linear, then so is T^{-1}.
(ii) If S and T are invertible and $S T$ defined, then it is invertible with $(S T)^{-1}=T^{-1} S^{-1}$.

Examples

(ix) Take $X=U=V=\mathbb{R}[s]$, with $T=\frac{d}{d s}$ and $S=$ multiplication by s.
(x) Take $X=U=V=\mathbb{R}^{3}$, with S a 90°-rotation around the x_{1} axis, and T a 90°-rotation around the x_{2} axis.

In both of these examples, S and T are linear with $S T \neq T S$. (Which are invertible?)

Transposes

Let $T: X \rightarrow U$ be linear and $\ell \in U^{\prime}$ (recall: $\ell: U \rightarrow K$).
The composition $m:=\ell T$ is a linear map $X \rightarrow K$, i.e., an element of X^{\prime}.
Since T is fixed, this defines an assignment of each $m \in X^{\prime}$ to $\ell \in U^{\prime}$.
This defines the following linear map, called the transpose of T :

$$
T^{\prime}: U^{\prime} \longrightarrow X^{\prime}, \quad T^{\prime}: \ell \longmapsto m,
$$

Using scalar product notation we can rewrite $m(x)=\ell(T(x))$ as $(m, x)=(\ell, T x)$.

Key property

The transpose of $T: X \rightarrow U$ is the (unique) map $T^{\prime}: U^{\prime} \rightarrow X^{\prime}$ that satisfies $m=T^{\prime} \ell$, i.e.,

$$
\left(T^{\prime} \ell, x\right)=\left(\ell, T_{x}\right), \quad \text { for all } x \in X, \ell \in U^{\prime}
$$

Caveat: We are writing ℓT for $\ell \circ T$, but $T^{\prime} \ell$ for $T^{\prime}(\ell)$ (much like T_{x} for $T(x)$).

Properties (HW exercise)

Whenever meaningful, we have

$$
(S T)^{\prime}=T^{\prime} S^{\prime}, \quad(T+R)^{\prime}=T^{\prime}+R^{\prime}, \quad\left(T^{-1}\right)^{\prime}=\left(T^{\prime}\right)^{-1}
$$

Transposes

Examples (cont.)

(xi) Let $X=\mathbb{R}^{N}, U=\mathbb{R}^{M}$, and $T x=u$, where $u_{i}=\sum_{j=1}^{N} t_{i j} x_{j}$.

By definition, for some $\ell_{1}, \ldots, \ell_{m} \in K$,
$(\ell, u)=\sum_{i=1}^{M} \ell_{i} u_{i}=\sum_{i=1}^{M} \ell_{i}\left(\sum_{j=1}^{N} t_{i j} x_{j}\right)=\sum_{i=1}^{M} \sum_{j=1}^{N} \ell_{i} t_{i j} x_{j}=\sum_{i=1}^{N}\left(\ell_{i} \sum_{j=1}^{M} t_{i j} x_{j}\right)=\sum_{j=1}^{N} m_{j} x_{j}$
This gives us a formula for $m=\left(m_{1}, \ldots, m_{N}\right)$, where $(\ell, u)=(m, x)$.

We'll see later that if we express T in matrix form, then T^{\prime} is formed by making the rows of T the columns of T^{\prime}.

Transposes

Proposition

If $X^{\prime \prime}$ and $U^{\prime \prime}$ are canonically identified with X and U, respectively, then $T^{\prime \prime}=T$.

Theorem 3.5

The annihilator of the range of T is the nullspace of its transpose, i.e., $R_{T}^{\perp}=N_{T^{\prime}}$.

Proof

By definition,

$$
\begin{aligned}
R_{\bar{T}}^{\perp} & =\left\{\ell \in U^{\prime}:(\ell, u)=0 \forall u \in R_{T}\right\} \\
& =\left\{\ell \in U^{\prime}:\left(\ell, T_{x}\right)=0 \forall x \in X\right\} \\
& =\left\{\ell \in U^{\prime}:\left(T^{\prime} \ell, x\right)=0 \forall x \in X\right\} \\
& =N_{T^{\prime}} .
\end{aligned}
$$

Thus, $\ell \in R_{T}^{\perp}$ iff $T^{\prime} \ell=0$, i.e., iff $\ell \in N_{T^{\prime}}$.

Applying \perp to both sides of $R_{T}^{\perp}=N_{T^{\prime}}$ (Theorem 3.5) yields the following:

Corollary 3.5

The range of T is the annihilator of the nullspace of T^{\prime}, i.e., $R_{T}=N_{T^{\prime}}^{\perp}$.

Transposes

Theorem 3.6

For any linear mapping $T: X \rightarrow U$, we have $\operatorname{dim} R_{T}=\operatorname{dim} R_{T^{\prime}}$.

Proof

We can deduce the following easy facts:

- $\operatorname{dim} R_{T}^{\perp}+\operatorname{dim} R_{T}=\operatorname{dim} U$
- $\operatorname{dim} N_{T^{\prime}}+\operatorname{dim} R_{T^{\prime}}=\operatorname{dim} U^{\prime}$
- $\operatorname{dim} U=\operatorname{dim} U^{\prime}$
(Theorem 2.4 applied to $R_{T} \subseteq U$);
(R-N Theorem applied to $T^{\prime}: U^{\prime} \rightarrow X^{\prime}$);
(Theorem 2.2).

Now, $R_{T}^{\perp}=N_{T^{\prime}}$ (Theorem 3.5) immediately yields the result.

Corollary 3.6

Let $T: X \rightarrow U$ be linear with $\operatorname{dim} X=\operatorname{dim} U$. Then $\operatorname{dim} N_{T}=\operatorname{dim} N_{T^{\prime}}$.

Proof

Apply the R-N Theorem to $T: X \rightarrow U$ and $T^{\prime}: U^{\prime} \rightarrow X^{\prime}:$

- $\operatorname{dim} N_{T}=\operatorname{dim} X-\operatorname{dim} R_{T}$;
- $\operatorname{dim} N_{T^{\prime}}=\operatorname{dim} U^{\prime}-\operatorname{dim} R_{T^{\prime}}$.

Now apply $\operatorname{dim} X=\operatorname{dim} U=\operatorname{dim} U^{\prime}$ (assumption), and $\operatorname{dim} R_{T}=\operatorname{dim} R_{T^{\prime}}$ (Theorem 3.6).

Algebra of linear mappings, revisited

Definition

An endomorphism of a vector space X is a linear map from X to itself. Denote the set of endomorphisms of X by $\mathscr{L}(X, X)$ or $\operatorname{Hom}(X, X)$ or $\operatorname{End}(X)$.

Remarks

$\mathscr{L}(X, X)$ is a vector space, but we can also "multiply" vectors; it is an algebra.
It is an associative but noncommutative algebra, with unity I, satisfying $I x=x$.
$\mathscr{L}(X, X)$ contains zero divisors: pairs S, T such that $S T=0$ buth neither S nor T is zero.

Proposition

If $A \in \mathscr{L}(X, X)$ is a left inverse of $B \in \mathscr{L}(X, X)$ [i.e., $A B=I$], then it is also a right inverse [i.e., $B A=I$].

Definition

The invertible elements of $\mathscr{L}(X, X)$ forms the general linear group, denoted $\mathrm{GL}(n, K)$, where $n=\operatorname{dim} X$.

Every $S \in \mathrm{GL}(n, K)$ defines a similarity transformation of $\mathscr{L}(X, X)$, sending $M \longmapsto M_{S}:=S M S^{-1}$, for each $M \in \mathscr{L}(X, X)$. We say M and M_{S} are similar.

Similarity

Theorem 3.7

Every similarity transform is an automorphism ["structure-preserving bijection"] of $\mathscr{L}(X, X)$:

$$
(k M)_{S}=k M_{S}, \quad(M+N)_{S}=M_{S}+N_{S}, \quad(M N)_{S}=M_{S} N_{S}
$$

Moreover, the set of similarity transforms forms a group under $\left(M_{S}\right)_{T}:=M_{T S}$, called the inner automorphism group of $G L(n, K)$.

Proof

Verification of $(k M)_{S}=k M_{S}$, and $(M+N)_{S}=M_{S}+N_{S}$ is trivial.
Next, observe that $M_{S} N_{S}=\left(S M S^{-1}\right)\left(S N S^{-1}\right)=S M N S^{-1}=(M N)_{S}$.
Finally, $\left(M_{S}\right)_{T}=T\left(S M S^{-1}\right) T^{-1}=(T S) M(T S)^{-1}=M_{T S}$.
Checking the group axioms is a straight-forward exercise.

Theorem 3.8 (exercise)

Similarity is an equivalence relation, i.e., it is:
(i) Reflexive: $M \sim M$;
(ii) Symmetric: $L \sim M$ implies $M \sim L$;
(iii) Transitive: $L \sim M$ and $M \sim N$ implies $L \sim N$.

Algebra of linear mappings

Theorem 3.9 (HW exercise)

If either A or B in $\mathscr{L}(X, X)$ is invertible, then $A B$ and $B A$ are similar.

Given any $A \in \mathscr{L}(X, X)$ and polynomial $p(s)=a_{N} s^{N}+\cdots+a_{1} s+a_{0}$, consider the polynomial $p(A)=a_{N} A^{N}+\cdots+a_{1} A+a_{0} I$.

The set of polynomials in A is a commutative subalgebra of $\mathscr{L}(X, X)$. [to be revisited]

Miscellaneous definitions

- A linear map $P: X \rightarrow X$ is a projection if $P^{2}=P$.
- The commutator of $A, B \in \mathscr{L}(X, X)$ is $[A, B]:=A B-B A$, which is 0 iff A and B commute.

Examples (cont.)

(xii) If $X=\{f: \mathbb{R} \rightarrow \mathbb{R}$, contin. $\}$, then the following maps $P, Q \in \mathscr{L}(X, X)$ are projections:

- $(P f)(x)=\frac{f(x)+f(-x)}{2}$; this is the even part of f.
- $(Q f)(x)=\frac{f(x)-f(-x)}{2}$; this is the odd part of f.

Note that $f=P f+Q f$ for any $f \in X$.

