Lecture 2.6: Matrices

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

How to encode a linear map with a matrix

Let $T: X \to U$ be a linear map between finite-dimensional vector spaces.

To encode T as a matrix, we'll need to choose:

- 1. an "input basis" $\mathcal{B}_X = \{x_1, \dots, x_n\}$ for X,
- 2. an "output basis" $\mathcal{B}_U = \{u_1, \dots, u_m\}$ for U.

Let $\{\ell_1, \dots, \ell_m\}$ be the dual basis of \mathcal{B}_U .

First, we write the images of the basis vectors in \mathcal{B}_X using the basis vectors in \mathcal{B}_U :

 $Tx_1 =$

 $Tx_2 =$

:

 $Tx_j =$

:

 $Tx_n =$

Summary

Let $T: X \to U$. The matrix A of T w.r.t. bases $\mathcal{B}_X = \{x_1, \dots, x_n\}$ and $\mathcal{B}_U = \{u_1, \dots, u_m\}$ is

$$A = {}_{\mathcal{B}_X}[T]_{\mathcal{B}_U} = \begin{bmatrix} Tx_1 & Tx_2 & \cdots & Tx_n \end{bmatrix}.$$

Remarks

- \blacksquare The range of T is the span of the column vectors the column space.
- $\mathbf{a}_{ij} = (\ell_i, Tx_i),$

$$Tx_{1} = a_{11}u_{1} + a_{21}u_{1} + \dots + a_{i1}u_{j} + \dots + a_{m1}u_{m}$$

$$Tx_{2} = a_{12}u_{1} + a_{22}u_{1} + \dots + a_{i2}u_{j} + \dots + a_{m2}u_{m}$$

$$\vdots$$

$$Tx_{j} = a_{1j}u_{1} + a_{2j}u_{1} + \dots + a_{ij}u_{j} + \dots + a_{mj}u_{m}$$

$$\vdots$$

$$Tx_{n} = a_{1n}u_{1} + a_{2n}u_{1} + \dots + a_{in}u_{j} + \dots + a_{mn}u_{m}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Example 1

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the projection onto the line y = x.

An interesting choice of basis

Proposition

If $T: X \to U$ is invertible, we can always choose \mathcal{B}_X and \mathcal{B}_U so the matrix is the identity.

More generally, for any $T\colon X\to U$, we can choose \mathcal{B}_X and \mathcal{B}_U so the matrix in block form is

$$A = {}_{\mathcal{B}_X}[T]_{\mathcal{B}_U} = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}.$$

Example 2

Let
$$X = \{c_0 + c_1 x + c_2 x^2 \mid c_i \in \mathbb{R}\}$$
 with basis $\mathcal{B}_X = \{1, x, x^2\}$.

Let
$$U = \{c_0 + c_1 x \mid c_i \in \mathbb{R}\}$$
 with basis $\mathcal{B}_U = \{1, x\}$.

Let
$$T=rac{d}{dx}$$
, and so $T\colon c_0+c_1x+c_2x^2\mapsto c_1+2c_2x$.

The matrix of the transpose

Let $T: X \to U$ be linear, and pick bases $\mathcal{B}_X = \{x_1, \dots, x_n\}$ and $\mathcal{B}_U = \{u_1, \dots, u_m\}$.

Let $\mathcal{B}_{U'} = \{\ell_1, \dots, \ell_m\}$ be the dual basis of \mathcal{B}_U .

Let $A = (a_{ij})$ be the matrix of T w.r.t. these bases.

In plain English, a_{ij} is the result of:

- 1. starting with the j^{th} basis vector in X,
- 2. applying the map T,
- 3. applying the $i^{\rm th}$ dual basis vector in U'.

Let's apply these steps to the transpose map $T'\colon U' o X'$ to find its matrix form, $A'=(a'_{ij})$.