Lecture 3.1: Determinant prerequisites

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

What is a determinant

Definition (unofficial)

The determinant of $T: \mathbb{R}^n \to \mathbb{R}^n$ is the signed volume of $T([0,1]^n)$, the image of the unit n-cube.

Permutations

Definition

Let $[n] := \{1, \dots, n\}$. A permutation is a bijection $\pi : [n] \to [n]$. The set of all n! permutations is the symmetric group, S_n .

Definition

The discriminant of variables x_1, \ldots, x_n is

$$P(x_1,\ldots,x_n)=\prod_{i< j}(x_i-x_j).$$

Permuting variables only changes the sign of the discriminant:

$$P(\pi(x_1,\ldots,x_n)) = \prod_{i< j} (x_{\pi(i)} - x_{\pi(j)}) = \underbrace{\operatorname{sgn}(\pi)}_{i < j} \prod_{i < j} (x_i - x_j).$$

We call $sgn(\pi)$ the sign of the permutation π .

Transpositions

A transposition is a permutation $\tau \in S_n$ that swaps two entries and fixes the rest. That is,

$$\tau(i) = j$$
, $\tau(j) = i$, $\tau(k) = k$, if $k \neq i, j$.

We write this as (ij).

Proposition (HW)

- (i) $\operatorname{sgn}(\pi_1 \circ \pi_2) = \operatorname{sgn}(\pi_1) \operatorname{sgn}(\pi_2)$
- (ii) $sgn(\tau) = -1$ for any transposition
- (iii) every $\pi \in S_n$ can be written as a composition of transpositions: $\pi = \tau_k \circ \cdots \circ \tau_1$
- (iv) the parity of this decomposition is unique
- (v) if $\pi = \tau_k \circ \cdots \circ \tau_1$, then $sgn(\pi) = (-1)^k$.