Lecture 4.2: The Cayley-Hamilton theorem

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Definitions

Throughout, $A: X \to X$ will be an $n \times n$ matrix over an algebraically closed field K.

Definition

The characteristic polynomial of A is

$$p_A(t) = \det(tI - A).$$

$$\det(tI-A) = \begin{vmatrix} t-a_{11} & -a_{12} & -a_{13} & \dots & -a_{1(n-1)} & -a_{1n} \\ -a_{21} & t-a_{22} & -a_{23} & \dots & -a_{2(n-1)} & -a_{2n} \\ -a_{31} & -a_{32} & t-a_{33} & \dots & -a_{3(n-1)} & -a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_{(n-1)1} & -a_{(n-1)2} & -a_{(n-1)3} & \dots & t-a_{(n-1)(n-1)} & -a_{(n-1)n} \\ -a_{n1} & -a_{n2} & -a_{n3} & \dots & -a_{n(n-1)} & t-a_{nn} \end{vmatrix}$$

Remarks

- lacksquare Recall that $\det M = \sum_{\pi \in \mathcal{S}_n} \operatorname{sgn}(\pi) m_{\pi(1),1} m_{\pi(2),2} \cdots m_{\pi(n),n}.$
- \blacksquare The characteristic polynomial has degree n, and its roots are the eigenvalues of A.

Determinant and trace, revisited

Proposition 4.4

If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$, then

$$\operatorname{tr} A = \sum_{i=1}^n \lambda_i, \qquad \det A = \prod_{i=1}^n \lambda_i$$

This follows from the following two observations:

$$\det(tI-A) = \begin{vmatrix} t-a_{11} & -a_{12} & -a_{13} & \dots & -a_{1(n-1)} & -a_{1n} \\ -a_{21} & t-a_{22} & -a_{23} & \dots & -a_{2(n-1)} & -a_{2n} \\ -a_{31} & -a_{32} & t-a_{33} & \dots & -a_{3(n-1)} & -a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_{(n-1)1} & -a_{(n-1)2} & -a_{(n-1)3} & \dots & t-a_{(n-1)(n-1)} & -a_{(n-1)n} \\ -a_{n1} & -a_{n2} & -a_{n3} & \dots & -a_{n(n-1)} & t-a_{nn} \end{vmatrix}$$

$$\det M = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) m_{\pi(1),1} m_{\pi(2),2} \cdots m_{\pi(n),n}.$$

Polynomials of matrices

Remark

If $Av = \lambda v$, then $A^k v = \lambda^k v$ for all $k \in \mathbb{N}$.

Actually, much more is true:

Spectral mapping theorem

If λ is an eigenvalue of A, then for any polynomial q(t),

- (a) $q(\lambda)$ is an eigenvalue of q(A)
- (b) conversely, every eigenvalue of q(A) has this form.

Corollary 4.5

Every eigenvalue of $p_A(A)$ is zero.

Actually, much more is true:

Cayley-Hamilton theorem

Every matrix satisfies its characteristic polynomial. That is, $p_A(A) = 0$.

Lemma 4.6 (exercise)

Let *P* and *Q* be polynomials with matrix coefficients:

$$P(t) = P_n t^n + \cdots + P_1 t + P_0, \qquad Q(t) = Q_m t^m + \cdots + Q_1 t + Q_0.$$

Their product is a polynomial

$$R(t) = P(t)Q(t) = (P_n t^n + \dots + P_1 t + P_0)(Q_m t^m + \dots + Q_1 t + Q_0)$$

= $R_{n+m} t^{n+m} + \dots + R_1 t + R_0$,

where $R_k = \sum_{i+j=k} P_i Q_j$. Moreover, if A commutes with the Q_i 's, then P(A)Q(A) = R(A).

We will apply this to the polynomial Q(t) = tI - A, and so det $Q(t) = p_A(t)$.

Let C_{ji} be the (j,i) cofactor of Q(t). By Cramer's theorem, $\det Q(t)I=(C_{ji})Q(t)$.

If we let $P(t) = (C_{ii})$, then

$$R(t) := P(t)Q(t) = \det Q(t)I = p_A(t)I.$$

Clearly, A commutes with the coefficients of Q(t), and Q(A) = 0, so

$$R(A) = P(A)Q(A) = \det Q(A)I = p_A(A) = 0.$$