Lecture 4.6: Generalized eigenspaces

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Goals

Assume K is algebraically closed, and dim X = n. Last time, we proved the following:

Spectral theorem

Let $A: X \to X$ be linear. Then

$$X=E_{\lambda_1}\oplus\cdots\oplus E_{\lambda_k},$$

where $E_{\lambda_j} = \bigcup_{m=1} N_{(A-\lambda_j I)^m}$ is the generalized eigenspace of λ_j .

We motivated it with a running example, a map with $p_A(t)=(t-\lambda)^{11}$, and dim $N_{A-\lambda I}=4$:

$$v_{5} \stackrel{A-\lambda I}{\longmapsto} v_{4} \stackrel{A-\lambda I}{\longmapsto} v_{3} \stackrel{A-\lambda I}{\longmapsto} v_{2} \stackrel{A-\lambda I}{\longmapsto} v_{1} \stackrel{A-\lambda I}{\longmapsto} 0$$

$$w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{\longmapsto} 0$$

$$x_{2} \stackrel{A-\lambda I}{\longmapsto} x_{1} \stackrel{A-\lambda I}{\longmapsto} 0$$

However, we haven't actually proven that the generalized eigenvectors have this structure. In this lecture, we will show how to explicitly construct such a basis.

We'll also see why the generalized eigenspace structure determines the similarity class of A.

Generalized eigenspaces characterize similarity

Let $A: X \to X$ have eigenvalue λ of degree d_{λ} . For each $m = 1, 2, \ldots$, define

$$\mathit{N}_m(\lambda) = \mathit{N}_{(A-\lambda I)^m}, \qquad \text{and note that} \quad \mathit{E}_\lambda = \bigcup_{m=1}^\infty \mathit{N}_m(\lambda).$$

It turns out that A (up to a choice of basis) is completely determined by the dimensions of these "eigen-subspaces" $N_1(\lambda),\ldots,N_{d_\lambda}(\lambda)$, for each λ .

For another $B: X \to X$ with eigenvalue λ , denote its eigen-subspaces by $M_m(\lambda) = N_{(B-\lambda I)^m}$.

Theorem 4.11

The linear maps A and B are similar if and only if for each eigenvalue λ ,

$$\dim N_m(\lambda) = \dim M_m(\lambda), \quad \text{for all } m = 1, 2, \dots$$

The " \Rightarrow " implication is easy. Let $A = PBP^{-1}$.

Then $(A - \lambda I)^m = P(B - \lambda I)^m P^{-1}$, and similar maps have the same nullity.

For the " \Leftarrow " implication, we need to construct a basis for E_{λ} under which $A - \lambda I$ (and hence $B - \lambda I$) admits a nice matrix form.

This is the Jordan canonical form.

Basis construction (algebraic description)

Lemma 4.7 (HW)

The map $A - \lambda I$ is a well-defined injective map on quotient spaces, i.e.,

$$A - \lambda I : N_{i+1}/N_i \longrightarrow N_i/N_{i-1},$$

$$A - \lambda I : \bar{x} \longmapsto \overline{(A - \lambda I)x}.$$

Therefore, $\dim(N_{j+1}/N_j) \leq \dim(N_j/N_{j-1})$.

We will construct our basis in batches, from "left-to-right", starting with $N_d = E_{\lambda}$.

Let $\bar{x}_1, \dots, \bar{x}_{\ell_0}$ be a basis for N_d/N_{d-1} .

Apply $A - \lambda I$, to get $(A - \lambda I)\bar{x}_j \mapsto \bar{x}'_j$.

The vectors $ar{x}_1',\ldots,ar{x}_{\ell_0}'$ are linearly independent in N_{d-1}/N_{d-2} . Extend to a basis $ar{x}_1',\ldots,ar{x}_{\ell_1}'$

Apply $A - \lambda I$, to get $(A - \lambda I)\bar{x}'_j \mapsto \bar{x}''_j$.

The vectors $ar{z}_1'',\dots,ar{z}_{\ell_1}''$ are linearly independent in N_{d-2}/N_{d-3} . Extend to a basis $ar{z}_1'',\dots,ar{z}_{\ell_2}''$

Repeat this process, until we reach the genuine eigenvectors. The collection of representatives we've constructed is a basis for E_{λ} .

Basis construction (visualization)

Key points

$$A - \lambda I \colon N_{j+1}/N_j \hookrightarrow N_j/N_{j-1} \qquad \Longrightarrow \qquad \dim(N_{j+1}/N_j) \leq \dim(N_j/N_{j-1}).$$

$$x_{1} \stackrel{A-\lambda I}{\longmapsto} x'_{1} \stackrel{}{\longmapsto} x''_{1} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{1}^{(d)} \stackrel{}{\longmapsto} 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_{\ell_{0}} \stackrel{}{\longmapsto} x'_{\ell_{0}} \stackrel{}{\longmapsto} x''_{\ell_{0}} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{\ell_{0}}^{(d)} \stackrel{}{\longmapsto} 0$$

$$x'_{\ell_{0}+1} \stackrel{}{\longmapsto} x''_{\ell_{0}+1} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{\ell_{0}+1}^{(d)} \stackrel{}{\longmapsto} 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x'_{\ell_{1}} \stackrel{}{\longmapsto} x''_{\ell_{1}} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{\ell_{1}}^{(d)} \stackrel{}{\longmapsto} 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x''_{\ell_{1}+1} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{\ell_{1}+1}^{(d)} \stackrel{}{\longmapsto} 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x''_{\ell_{2}} \stackrel{}{\longmapsto} \cdots \stackrel{}{\longmapsto} x_{\ell_{2}}^{(d)} \stackrel{}{\longmapsto} 0$$

$$\vdots \qquad \vdots \qquad \vdots$$