Lecture 5.4: Adjoints and least squares

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Identifying a space with its dual

Early on, we thought of scalar functions as row vectors, because intuitively:
"Every $\ell \in X^{\prime}$ can be realized by simply taking the dot product with some fixed vector."
In the previous lecture, we generalized this to arbitrary (n-dimensional) inner product spaces.

Key point

Every scalar function $\ell \in X^{\prime}$ can be expressed as $\langle-, y\rangle$, for some $y \in X$.

This canonically identifies X with X^{\prime}, via $y \mapsto\langle-, y\rangle$.
Consider a linear map $A: X \rightarrow U$ between real inner product spaces.
The transpose of $A: X \rightarrow U$ is a linear map $A^{\prime}: U^{\prime} \rightarrow X^{\prime}$ satisfying

$$
\left(A^{\prime} \ell, x\right)=(\ell, A x), \quad x \in X, \ell \in U^{\prime}
$$

If X and U are identified with their duals, then the transpose is a map $A^{\prime}: U \rightarrow X$.
Alternatively, $\ell(x)=\langle A x, u\rangle$ is in X^{\prime}. So it must be equal to $\langle-, y\rangle$ for some $y \in U$.
The vector y depends linearly on u, via some map $A^{*}: U \rightarrow X$.

Formal definition of the adjoint

Definition

Let $A: X \rightarrow U$ be a linear map between real inner product spaces. The adjoint of A is the unique map $A^{*}: U \rightarrow X$ such that

$$
\underbrace{\left\langle x, A^{*} u\right\rangle}_{\text {product in } X}=\underbrace{\langle A x, u\rangle}_{\text {inner product in } U}
$$

Proposition 5.7

Let $A, B: X \rightarrow U$ and $C: U \rightarrow V$ be linear maps between real inner product spaces.
(i) $(A+B)^{*}=A^{*}+B^{*}$
(ii) $(C A)^{*}=A^{*} C^{*}$
(iii) If A is bijective, then $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$
(iv) $\left(A^{*}\right)^{*}=A$
(v) The matrix representations of A and A^{*} are transposes of each other.

Properties of the adjoint

Lemma 5.8

The maps A and $A^{*} A$ have the same nullspace.

Suppose A is an $m \times n$ matrix $(m>n)$ with linearly independent columns. Then:

- the columns of A are a basis for the range (column space) of A
- $A^{*} A$ is invertible.

This, and the following, is the crux of the least squares method of finding the "best fit line."

Corollary 5.9

Let $A: X \rightarrow U$ have trivial nullspace. Then (unique) vector x that minimizes $\|A x-b\|^{2}$ is the solution to $A^{*} A z=A^{*} b$.

An example of least squares

Let's find the "best fit line" $a_{0}+a_{1} \times$ through the points $(1,1),(2,2)$, and $(3,2)$ in \mathbb{R}^{2}.

Orthogonal projection and adjoints

Proposition 5.10

Let $X=Y \oplus Y^{\perp}$. The orthogonal projection

$$
P_{Y}: X \longrightarrow X, \quad y+y^{\perp} \longmapsto y
$$

is self-adjoint, i.e., $P_{Y}^{*}=P_{Y}$.

Key idea
Let y_{1}, \ldots, y_{k} be a basis for Y, and $A=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{k}\end{array}\right]$. Then

$$
A\left(A^{*} A\right)^{-1} A^{*}
$$

is the projection matrix onto Y.

