Lecture 5.6: The norm of a linear map

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

The norm of a vector measures its size, or magnitude.
The set $\operatorname{Hom}(X, U)$ of linear maps is a vector space. So what is the norm of $A: X \rightarrow U$?
The determinant is one way to measure the "size" of a linear map. However, this won't work, because

1. it is only defined when $X=U$,
2. it cannot be a norm, as there are nonzero linear maps with determinant zero.

There are a number of approaches that will work. Two reasonable ones are

1. the norm arising from the inner product $\langle A, B\rangle:=\operatorname{tr}\left(B^{*} A\right)$,
2. the largest factor that A can stretch a vector.

Let's recall the following definition from real analysis.

Definition

The supremum of a bounded subset $S \subseteq \mathbb{R}$, is its least upper bound. This always exists, and is denoted $\sup S$.

Moreover, if S is closed (contains all of its limit points), then $\sup S=\max S$.

Frobenius and induced norms

We can define an inner product on $\operatorname{Hom}(X, U)$ by

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) .
$$

Naturally, this gives us a definition of the norm of a linear map.

Definition

Let X and U be vector spaces. The Frobenius norm of $A: X \rightarrow U$ is

$$
\|A\|=\sqrt{\operatorname{tr}\left(A^{*} A\right)}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

This does not depend on any inner product structure of X or U.
Alternatively, we can define $\|A\|$ as the largest factor that A stretches a (nonzero) vector by.
Clearly, this depends on the inner products (and hence norms) on X and U.

Definition

Let X and U be inner product spaces. The induced norm of $A: X \rightarrow U$ is

$$
\|A\|:=\sup _{\|x\|=1}\|A x\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Properties of the induced norm

Henceforth, we will use the induced norm, unless otherwise stated.

Proposition 5.12

For any linear map $A: X \rightarrow U$,
(i) $\|A z\| \leq\|A\| \cdot\|z\|$, for all $z \in X$.
(ii) $\|A\|=\sup _{\|x\|=\|v\|=1}\langle A x, v\rangle$.

Properties of the induced norm

Proposition 5.13

Given linear maps $A, B: X \rightarrow U$ and $C: U \rightarrow V$,
(i) $\|k A\|=|k| \cdot\|A\|$
(ii) $\|A+B\| \leq\|A\|+\|B\|$
(iii) $\|C A\| \leq\|C\| \cdot\|A\|$
(iv) $\left\|A^{*}\right\|=\|A\|$.

Open sets and invertible maps

Let X be a vector space with a norm. For $x_{0} \in X$ and $r>0$, define the ball of radius r, centered at x to be

$$
B_{r}\left(x_{0}\right)=\left\{x \in X:\left\|x-x_{0}\right\|<r\right\} .
$$

A subset $U \subseteq X$ is open if for every $u \in U$, there is some $r>0$ for which $B_{r}(u) \subseteq U$.
The following implies that the subset of invertible maps is open.

Theorem 5.14

Let $A: X \rightarrow U$ be invertible, and suppose $B: X \rightarrow U$

$$
\|A-B\|<\frac{1}{\left\|A^{-1}\right\|}
$$

Then B is invertible.

Other norms

Definition

Let X and U be a vector spaces over R. A norm on $\operatorname{Hom}(X, U)$ is a function

$$
\|\cdot\|: \operatorname{Hom}(X, U) \longrightarrow \mathbb{R}
$$

such that

1. $\|k A\|=|k| \cdot| | A| |$
2. $\|A+B\| \leq\|A\|+\|B\|$
3. $\|A\|>0$ for $A \neq 0$.

If $X=U$, then a norm is submultiplicative if

$$
\|A B\| \leq\|A\| \cdot\|B\| .
$$

