Lecture 5.8: Complex inner product spaces

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Real vs. complex vector spaces

We have primarily been dealing with \mathbb{R}-vector spaces. Things are a little different over \mathbb{C}.
Let's compare the notion of norm for real vs. complex numbers.

- For any real number $x \in \mathbb{R}$, its norm (distance from 0) is $|x|=\sqrt{x^{2}} \in \mathbb{R}$.
- For any complex number $z=a+b i \in \mathbb{C}$, its norm (distance from 0) is defined by

$$
|z|=\sqrt{z \bar{z}}=\sqrt{(a+b i)(a-b i)}=\sqrt{a^{2}+b^{2}}
$$

Let's now go from \mathbb{R} and \mathbb{C} to \mathbb{R}^{2} and \mathbb{C}^{2}.

- For any vector $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$, its norm (distance from 0) is

$$
\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{x^{T} x}=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

- For any $z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right] \in \mathbb{C}^{2}$, with $z_{1}=a+b i, z_{2}=c+d i$, its norm is defined by

$$
\|z\|=\sqrt{\langle z, z\rangle}:=\sqrt{\bar{z}^{\top} z}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

For example, let's compute the norms of $x=\left[\begin{array}{l}1 \\ 1\end{array}\right] \in \mathbb{R}^{2}$ and $z=\left[\begin{array}{l}i \\ i\end{array}\right] \in \mathbb{C}^{2}$.

Complex dot product

Definition

If X is a finite-dimensional vector space of \mathbb{C}, then define the complex dot product as

$$
\langle z, w\rangle=\bar{w}^{H} z:=\bar{w}^{T} z=\left[\begin{array}{llll}
\overline{w_{1}} & \overline{w_{2}} & \ldots & \overline{w_{n}}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] .
$$

Here, H stands for Hermitian.
The norm of a vector $z=\left[\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{n}\end{array}\right]$ in \mathbb{C}^{n} is thus defined by

$$
\|z\|^{2}=\langle z, z\rangle=\bar{z}^{T} z=\left[\begin{array}{llll}
\overline{z_{1}} & \overline{z_{2}} & \cdots & \overline{z_{n}}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right]=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}
$$

Just like how we abstracted the dot product to a real inner product, we can abstract the complex dot product to a complex inner product.

Complex inner products and sesquilinear forms

Definition

A complex inner product space is a vector space X over \mathbb{C} endowed with a map

$$
\langle,\rangle: X \times X \longrightarrow \mathbb{C}
$$

satisfying
(i) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$ and $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
(ii) $\langle k u, v\rangle=k\langle u, v\rangle \quad$ "linear in the 1st coordinate"
(iii) $\langle u, k v\rangle=\bar{k}\langle u, v\rangle \quad$ "antilinear in the 2nd coordinate"
(iv) $\overline{\langle v, u\rangle}=\langle u, v\rangle \quad$ "Hermitian"
(v) $\langle u, u\rangle>0$ if $u \neq 0$, "positive-definite"
for all $u, v, w \in X$ and $k \in \mathbb{C}$.

Conditions (i)-(iii) are called sesquilinear. [Latin prefix sesqui- means "one and a half".]
A map satisfying (i)-(iv) is called a symmetric sesquilinear, or complex Hermitian form.

Complex Fourier series

Let X and U be a complex inner product spaces.
For any vectors x and y,

$$
\|x+y\|^{2}=\|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle+\|y\|^{2}=\|x\|^{2}+2 \Re\langle x, y\rangle+\|y\|^{2} .
$$

Most results for real spaces carry over to complex spaces; just replace T with H.
The adjoint of a linear map $A: X \rightarrow U$ is the map $A^{*}: U \rightarrow X$ such that

$$
\left\langle x, A^{*} u\right\rangle=\langle A x, u\rangle, \quad \forall x \in X, u \in U
$$

Proposition

The adjoint of $A: X \rightarrow U$ is its conjugate transpose, $A^{*}=A^{H}:=\bar{A}^{T}$.

Two vectors x, y are orthogonal if $\langle x, y\rangle=0$. The vectors x_{1}, \ldots, x_{k} in X are orthonormal if

$$
\left\langle x_{i}, x_{j}\right\rangle=x_{j}^{H} x_{i}=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Unitary maps

Recall that an isometry of a real inner product space fixing 0 is called orthogonal.
An isometry of a complex inner product space fixing 0 is called unitary.
The matrix A is orthogonal if $A^{T} A=I$, and unitary if $A^{H} A=I$.
Note that

- orthogonal means $A^{*}=A^{-1}$ in an \mathbb{R}-vector space
- unitary means $A^{*}=A^{-1}$ in a \mathbb{C}-vector space.

Proposition

Let $U: X \rightarrow X$ be unitary.
(i) U is linear
(ii) $U^{*} U=I$ (and conversely)
(iii) U is invertible, and U^{-1} is an isometry
(iv) $|\operatorname{det} U|=1$.

The unitary maps form the unitary group, denoted $U(n)$ or U_{n}. The special unitary group $S U(n)$ are those with determinant 1.

Complex Fourier series

Consider the space $X=\operatorname{Per}_{2 \pi}(\mathbb{C})$ of 2π-periodic complex-valued functions.
We can define an inner product as

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

The set

$$
\left\{e^{i n x} \mid n \in \mathbb{Z}\right\}=\left\{\ldots, e^{-2 i x}, e^{-i x}, 1, e^{i x}, e^{2 i x}, \ldots\right\}
$$

is an orthonormal basis w.r.t. to this inner product.
Thus, we can write each $f(x) \in \operatorname{Per}_{2 \pi}$ uniquely as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{i n x}+c_{-n} e^{-i n x}
$$

where

$$
c_{n}=\operatorname{proj}_{e^{i n x}}(f)=\left\langle f, e^{i n x}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

