Lecture 7.3: Gram matrices

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

The matrix $A^T A$

Consider an $n \times m$ matrix A over \mathbb{R} , where

$$A = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$$

The $m \times m$ matrix $A^T A$ is self-adjoint:

$$A^{T}A = \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{m} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}^{T}x_{1} & x_{m}^{T}x_{2} & \cdots & x_{m}^{T}x_{m} \end{bmatrix}$$

Note that $A: \mathbb{R}^m \to \mathbb{R}^n$ and $A^T A: \mathbb{R}^m \to \mathbb{R}^m$. We've already seen that:

- 1. $\operatorname{rank} A = \operatorname{rank} A^T A$ and $\operatorname{nullity} A = \operatorname{nullity} A^T A$ (in fact, $N_A = N_{A^T A}$)
- 2. $A^T A \geq 0$
- 3. If $N_A = 0$, then the projection matrix onto $\mathrm{Span}(x_1, \dots, x_m)$ is $A(A^T A)^{-1} A^T$.

This is an example of a Gram matrix.

Later, we'll diagonalize A^TA to get the celebrated singular value decomposition of A.

The matrix A^*A

Now, we'll generalize the construction A^TA with the standard inner product to A^*A to an arbitrary inner product.

We'll see how the construct all positive matrices.

Definition

Let $x_1, \ldots, x_m \in X$, with inner product (,). The Gram matrix of these vectors is

$$G = (G_{ij}),$$
 where $G_{i,j} = (f_i, f_j).$

Notice that $G = A^*A$, where $A = [x_1 \cdots x_m]$.

Theorem 7.4

- 1. Every Gram matrix is nonnegative.
- 2. The Gram matrix of a set of linearly independent vectors is positive.
- 3. Every positive matrix is a Gram matrix.

Examples

1. Let
$$X = \{f : [0,1] \to \mathbb{R}\}$$
, where $(f,g) = \int_0^1 f(t)g(t) dt$. If

$$f_1 = 0, \quad f_2 = t, \quad \ldots, \quad f_i = t^{i-1},$$

then the Gram matrix is $G = (G_{ij})$, where

$$G_{ij}=\frac{1}{i+j-1}.$$

2. Given a "weighting function" $w: \mathbb{R} \to \mathbb{R}^+$, define

$$(f,g) = \int_0^{2\pi} f(\theta) \overline{g(\theta)} w(\theta) d\theta.$$

If $f_j=m$, then the (2n+1) imes (2n+1) Gram matrix is $G_{kj}=c_{k-j}$, where

$$c_p = \int w(\theta) e^{-ip\theta} d\theta.$$

The entry-wise product of matrices

Let $A = (a_{ij})$ and $B = (b_{ij})$ be matrices of the same size. Then define

$$A\circ B=(a_{ij}b_{ij}).$$

Schur's product theorem

If A, B > 0, then so is $A \circ B$.