Lecture 7.4: Polar decomposition

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

The idea of the polar decomposition

Every nonzero complex number $z \in \mathbb{C}$ has a unique polar form

$$
z=r e^{i \theta}=|z| e^{i \theta}, \quad r \in \mathbb{R}^{+}, \quad \theta \in[0,2 \pi) .
$$

This can be thought of as decomposing $z \in \mathbb{C}$ into:

- a rotation by θ,
- a scaling by $|z|=r=\sqrt{\bar{z} z}$.

This is simply the polar decomposition of a 1×1 matrix.
Every linear map $A \in \operatorname{Hom}(X, X)$ can be decomposed as $A=U P$, where

- U is unitary; i.e., an isometry of X,
- $P \geq 0$; a scaling along an orthonormal axis u_{1}, \ldots, u_{n}.

It turns out that $P=\sqrt{A^{*} A}:=|A|$, and so sometimes this is written $A=U|A|$.
In this lecture, we will derive the polar decomposition of a linear map

$$
A: X \longrightarrow U, \quad \operatorname{dim} X=m, \quad \operatorname{dim} U=n .
$$

In the next lecture, we will derive the celebrated singular value decomposition (SVD).

Singular values

Key properties (Proposition 7.2)

- $A^{*} A \geq 0$;
- Every $P \geq 0$ has a unique nonnegative square root $R:=\sqrt{P}$, such that $R^{2}=P$.

This means that for some $\lambda_{1}, \ldots, \lambda_{m} \geq 0$,

$$
A^{*} A=W\left[\begin{array}{lll}
\lambda_{1}^{2} & & \\
& \ddots & \\
& & \lambda_{m}^{2}
\end{array}\right] W^{*}, \quad \text { and } \quad \sqrt{A^{*} A}=W\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right] W^{*} .
$$

Definition

The eigenvalues of $\lambda_{1}, \ldots, \lambda_{m}$ of $\sqrt{A^{*} A}$ are called the singular values of A.

Facts (that we've seen)

- $\|A x\|=\left\|\sqrt{A^{*} A} x\right\|$ for all $x \in X$.
- $A, A^{*} A$, and $\sqrt{A^{*} A}$ have the same nullspace.
- $A, A^{*} A$, and $\sqrt{A^{*} A}$ have the same rank.

Polar decomposition of an invertible map

Theorem

Every linear map $A: X \rightarrow U$ can be written as $A=U P$ where $P \geq 0$ and U is unitary. This is called the (left) polar decomposition of A.

To construct the polar decomposition, suppose $A=U P$.
Since $P \geq 0$, we can write $P=Q D Q^{*}$, and so

$$
P^{*} P=\left(Q D Q^{*}\right)^{*}\left(Q D Q^{*}\right)=\left(Q D^{*} Q^{*}\right) Q D Q^{*}=Q D^{2} Q^{*}=P^{2} .
$$

Now, notice that

$$
A^{*} A=(U P)^{*}(U P)=P^{*} U^{*} U P=P^{*} P=P^{2}
$$

Therefore, $P=\sqrt{A^{*} A}$.
If A is invertible, then $U=A P^{-1}=A{\sqrt{A^{*} A}}^{-1}$ is uniquely determined.
In this case,

$$
A=U P=\left(A{\sqrt{A^{*} A}}^{-1}\right) \sqrt{A^{*} A} .
$$

If A is not invertible, then U still exists, but is not unique.

Polar decomposition of an general linear map

Theorem

Every linear map $A: X \rightarrow U$ can be written as $A=U P$ where $P \geq 0$ and U is unitary. This is called the polar decomposition of A.

Suppose the eigenvalues of $\sqrt{A^{*} A}$ are

$$
\lambda_{1} \geq \cdots \geq \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{m}=0
$$

and pick a set x_{1}, \ldots, x_{m} of orthonormal eigenvectors. Then

$$
\frac{1}{\lambda_{1}} A x_{1}, \ldots, \frac{1}{\lambda_{r}} A x_{r}, x_{r+1}, \ldots, x_{m}
$$

is orthonormal. The polar decomposition is $A=U P$ where $P=\sqrt{A^{*} A}$ and

$$
U=\left[\begin{array}{ccccc}
\mid & & \mid & \mid & \\
\frac{1}{\lambda_{1}} A x_{1} & \cdots & \frac{1}{\lambda_{r}} A x_{r} & x_{r+1} & \cdots \\
\mid & & \mid & \mid & \\
x_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & x_{1}^{H} & - \\
& \vdots & \\
- & x_{m}^{H} & -
\end{array}\right] .
$$

Remark

If $A: X \rightarrow X$ and $r:=\operatorname{det} P=|\operatorname{det} A|$, then

$$
\operatorname{det} A=\operatorname{det} U \operatorname{det} P=e^{i \theta} \cdot r .
$$

