Math 4120, Midterm 2. Wednesday November 3, 2021

1. (35 points) Let $G=D_{6}$. A Cayley diagram and subgroup lattice are shown below.

(a) Which subgroups of D_{6} are normal? Which one is the center, $Z\left(D_{6}\right)$?
(b) Write down the conjugacy classes of subgroups of D_{6} that have size larger than 1 .
(c) Draw the subgroup lattice of the quotient $D_{6} /\left\langle r^{3}\right\rangle$. What familiar group is this isomorphic to?
(d) Find the commutator subgroup D_{6}^{\prime}. What familiar group is the abelianization D_{6}^{\prime} / D_{6} isomorphic to?
(e) Write D_{6} as the semidirect product of two (nontrivial) subgroups, in as many ways as possible, up to isomoprhism. Justify your answer.
(f) Is D_{6} isomorphic to the direct product of two (nontrivial) subgroups? Why or why not?
(g) Write down all (distinct) inner automorphisms of D_{6}. Denote $x \mapsto g x g^{-1}$ by φ_{g}. What familiar group is $\operatorname{Inn}\left(D_{6}\right)$ isomorphic to? [Hint: Recall that $\operatorname{Inn}(G) \cong$ $G / Z(G)$.
2. (15 points) Let H be a subgroup of an abelian group G.
(a) Show that H is abelian.
(b) Show that G / H is abelian.
3. (15 points) We have already seen examples, both in subgroup lattices and from old homework, of how dicyclic groups have an order-2 subgroup whose quotient yields a dihedral group. In this problem, you will establish this for all n. Define the map

$$
\varphi: \operatorname{Dic}_{2 n} \longrightarrow D_{n}, \quad \varphi\left(r^{i} s^{j}\right)=r^{i \bmod n} f^{j}
$$

(a) Show that φ is a homomorphism, and find $\operatorname{Ker}(\varphi)$.
(b) Is this map 1-to-1? Is it onto? Justify your answers.
(c) Show that $\operatorname{Dic}_{2 n} /\left\langle r^{n}\right\rangle \cong D_{n}$.

They aren't needed, but in case it helps, a Cayley diagram and subgroup lattice of Dic ${ }_{6}$ are shown below.

4. (20 points) Let $H, N \leq G$ and suppose that $N \unlhd G$. Show that

$$
H /(H \cap N) \cong H N / N .
$$

You may assume that $H N \leq G$, and that both $N \unlhd H N$ and $H \cap N \unlhd H$. [Hint: Start with a map φ from H. Make sure you write down how it's defined.]
5. (15 points) We've seen what it means for muliplication of cosets in G / N to be well-defined. We've also seen what it means for a map $f: G / N \rightarrow H$ to be well-defined.
(a) In plain English, in a single sentence, describe informally what "well-defined means" intuitively.
(b) Write down a formal definition of what it means for coset multiplication in G / N to be well-defined.
(c) Write down a formal definition of what it means for a map $f: G / N \rightarrow H$ to be well-defined.

