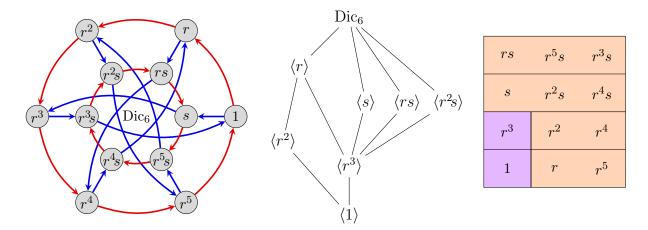
1. In this problem, we will explore the actions of the dicyclic group Dic₆ and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.



(a) The right action of Dic₆ on itself by conjugation is defined by the homomorphism

$$\phi \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S)$$
, $\phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg$.

Draw the action diagram and construct the fixed point table. Find $\operatorname{stab}(s)$ for each $s \in S$, $\operatorname{fix}(g)$ for each $g \in G$, as well as $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.

(b) The inner automorphism group

$$\operatorname{Inn}(\operatorname{Dic}_6) \cong \operatorname{Dic}_6/Z(\operatorname{Dic}_6) = \operatorname{Dic}_6/\langle r^3 \rangle \cong D_3$$

acts on Dic_6 , and the action diagram is the same as the one in Part (a). Construct the fixed point table of this action and find $\mathrm{stab}(s)$, $\mathrm{fix}(g)$, $\mathrm{Ker}(\phi)$ and $\mathrm{Fix}(\phi)$. Then draw the subgroup lattice of $\mathrm{Inn}(\mathrm{Dic}_6) = \langle \varphi_r, \varphi_s \rangle$, where $\varphi_g \colon x \mapsto g^{-1}xg$.

(c) The automorphism group of Dic_6 is $\mathrm{Aut}(\mathrm{Dic}_6) = \langle \varphi_r, \varphi_s, \alpha \rangle$, where α is the outer automorphism defined by

$$\alpha \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Dic}_6, \qquad \alpha(r) = r, \quad \alpha(s) = s^{-1} = r^3 s,$$

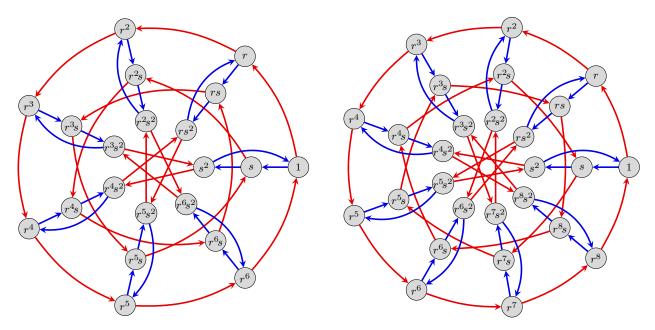
that "reverses" the blue arrows. Construct the action diagram, fixed point table, and find $\operatorname{stab}(s)$, $\operatorname{fix}(g)$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.

- (d) What familiar group is $\operatorname{Aut}(\operatorname{Dic}_6) = \langle \varphi_r, \varphi_s, \alpha \rangle$ isomorphic to? Construct a Cayley diagram and subgroup lattice.
- (e) The group $\operatorname{Aut}(\operatorname{Dic}_6)$ also acts on the conjugacy classes of Dic_6 . Construct the action diagram, fixed point table, and find $\operatorname{stab}(s)$, $\operatorname{fix}(g)$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
- (f) The group Dic₆ acts on its subgroups by conjugation, via the homomorphism

$$\phi \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S)$$
, $\phi(g) = \text{the permutation that sends each } H \mapsto g^{-1}Hg$.

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find $\operatorname{stab}(s)$, $\operatorname{fix}(g)$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.

2. Carry out the following steps for the groups $C_7 \rtimes C_3$ and $C_9 \rtimes C_3$, whose Cayley diagrams are shown below.



- (a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find $\operatorname{stab}(H)$ for each $H \leq G$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Which collections of subgroups arise as $\operatorname{fix}(g)$ for some $g \in G$, and why?
- (b) Let G act on the right cosets of $H = \langle s \rangle$, via the homomorphism

$$\phi \colon G \longrightarrow \operatorname{Perm}(S)$$
, $\phi(g) = \text{the permutation that sends each } Hx \mapsto Hxg$.

Construct the action diagram, fixed point table, and find $\operatorname{stab}(Hx)$ for each right coset, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Which subsets of S arise as $\operatorname{fix}(g)$ for some $g \in G$, and why?

3. Let G be a group, not necessarily finite, and let A and B be subgroups of finite index, but not necessarily normal. Let G act on $S = G/A \times G/B$ via the homomorphism

$$\phi\colon G\longrightarrow \mathrm{Perm}(S)\,, \qquad \phi(g)=\text{the permutation that sends each } (Ax,By)\mapsto (Axg,Byg).$$

- (a) Find the stabilizer of (A, B).
- (b) Use the orbit-stabilizer theorem to show that $[G:A\cap B] \leq [G:A][G:B]$. Give an explicit example of where the inequality is strict.
- (c) Show that there is some $N \subseteq G$ contained in both H and K with $[G:N] \subseteq \infty$.