- 1. For each of the following rings R, determine the zero divisors and the set U(R) of units.
 - (a) The set \mathcal{C}^1 of continuous real-valued functions $f: \mathbb{R} \to \mathbb{R}$.
 - (b) The polynomial ring $\mathbb{R}[x]$.
 - (c) $\mathbb{Z} \times \mathbb{Z}$, where addition and multiplication are defined componentwise.
 - (d) $\mathbb{R} \times \mathbb{R}$, where addition and multiplication are defined componentwise.
- 2. Let I and J be ideals of a ring R.
 - (a) Show that if a left ideal I of a ring R contains a unit, then I = R.
 - (b) Show that I + J, $I \cap J$, and IJ are ideals of R, where

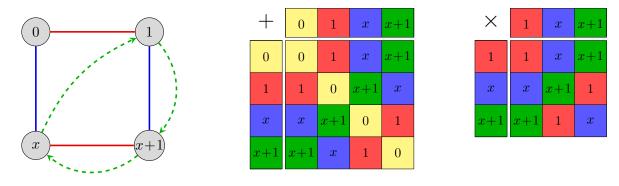
$$IJ = \{x_1y_1 + \dots + x_ky_k \mid x_i \in I, \ y_j \in J\}.$$

(c) If R is commutative, then the set

$$(I:J) = \left\{ r \in R \mid rJ \subseteq I \right\}$$

is called the *colon ideal* of I and J. Show that (I : J) is an ideal of R.

- (d) Consider the ideals $I = 4\mathbb{Z}$ and $J = 6\mathbb{Z}$ of the ring $R = \mathbb{Z}$. Compute I + J, $I \cap J$, IJ, (I : J), and (J : I).
- (e) Repeat Part (c) for the ideals $I = m\mathbb{Z}$ and $J = n\mathbb{Z}$ of $R = \mathbb{Z}$.
- 3. The finite field \mathbb{F}_4 on 4 elements can be constructed as the quotient of the polynomial $\mathbb{Z}_2[x]$ by the ideal $I = (x^2 + x + 1)$ generated by the irreducible polynomial $x^2 + x + 1$. The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{Z}_2[x]/(x^2 + x + 1) \cong \mathbb{F}_4$.



The polynomials $f(x) = x^3 + x + 1 \in \mathbb{Z}_2[x]$ and $g(x) = x^2 + x + 2 \in \mathbb{Z}_3[x]$ are irreducible. Construct the Cayley tables and Cayley diagram for the finite fields

$$\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(f)$$
 and $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(g)$.

What familiar groups appear as the additive and multiplicative groups of these fields?

4. The left ideal generated by $X \subseteq R$ is defined as

$$(X) := \bigcap \{ I \mid I \text{ is a left ideal s.t. } X \subseteq I \subseteq R \}.$$

(a) Show that the left ideal generated by X is

$$(X) = \{ r_1 x_1 + \dots + r_n x_n \mid n \in \mathbb{N}, \ r_i \in R, \ x_i \in X \}.$$

(b) The two-sided ideal generated by $X \subseteq R$ is defined by relacing "left" with "two-sided" in the definition above. Show that this is also equal to

$$\{r_1x_1s_1 + \dots + r_nx_ns_n \mid n \in \mathbb{N}, r_i, s_i \in R, x_i \in X\}.$$

- (c) Find a (non-commutive) ring R and a set X such that the left and two-sided ideals generated by X are different.
- 5. Prove the Fundamental homomorphism theorem (FHT) for rings: If $\phi: R \to S$ is a ring homomorphism, then $\operatorname{Ker}(\phi)$ is a two-sided ideal of R, and $R/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$. You may assume the FHT for groups.