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Overview

In this chapter we will introduce the concept of a subgroup and begin exploring some
of the rich mathematical territory that this concept opens up for us.

A subgroup is some smaller group living inside a larger group.

Before we embark on this leg of our journey, we must return to an important
property of Cayley diagrams that we’ve mentioned, but haven’t analyzed in depth.

This feature, called regularity, will help us visualize the new concepts that we will
introduce.

Let’s begin with an example.
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Regularity

Consider the group D3. It is easy to verify that frf = r−1.

Thus, starting at any node in the Cayley diagram, the path frf will always lead to the
same node as the path r−1.

That is, the following fragment permeates throughout the diagram.

Observe that equivalently, this is the same as saying that the path frfr will always
bring you back to where you started. (Because frfr = e).

Key observation

The algebraic relations of a group, like frf = r−1, give Cayley diagrams a uniform
symmetry – every part of the diagram is structured like every other.
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Regularity

Let’s look at the Cayley diagram for D3:

e

rr2

f

r2f rf

Check that indeed, frf = r−1 holds by following the corresponding paths starting at
any of the six nodes.

There are other patterns that permeate this diagram, as well. Do you see any?

Here are a couple: f 2 = e, r 3 = e.

Definition

A diagram is called regular if it repeats every one of its interval patterns throughout
the whole diagram, in the sense described above.
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Regularity

Every Cayley diagram is regular. In particular, diagrams lacking regularity do not
represent groups (and so they are not called Cayley diagrams).

Here are two diagrams that cannot be the Cayley diagram for a group because they
are not regular.

Recall that our original definition of a group was informal and “unofficial.”

One reason for this is that technically, regularity needs to be incorporated in the
rules. Otherwise, the previous diagram would describe a group of actions.

We’ve indirectly discussed the regularity property of Cayley diagrams, and it was
implied, but we haven’t spelled out the details until now.
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Subgroups

Definition

When one group is contained in another, the smaller group is called a subgroup of
the larger group. If H is a subgroup of G , we write H < G or H ≤ G .

All of the orbits that we saw in Chapter 5 are subgroups. Moreover, they are cyclic
subgroups. (Why?)

For example, the orbit of r in D3 is a subgroup of order 3 living inside D3. We can
write

〈r〉 = {e, r , r 2} < D3.

In fact, since 〈r〉 is really just a copy of C3, we may be less formal and write

C3 < D3.
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An example: D3

Recall that the orbits of D3 are

〈e〉 = {e}, 〈r〉 = 〈r 2〉 = {e, r , r 2}, 〈f 〉 = {e, f }

〈rf 〉 = {e, rf }, 〈r 2f 〉 = {e, r 2f } .

The orbits corresponding to the generators are staring at us in the Cayley diagram.
The others are more hidden.

e

rr2

f

r2f rf

It turns out that all of the subgroups of D3 are just (cyclic) orbits, but there are
many groups that have subgroups that are not cyclic.
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Another example: Z2 × Z2 × Z2

Here is the Cayley diagram for the group
Z2 × Z2 × Z2 (the “three-light switch group”).

A copy of the subgroup V4 is highlighted.

010

000

011

001

110

100

111

101

The group V4 requires at least two generators and hence is not a cyclic subgroup of
Z2 × Z2 × Z2. In this case, we can write

〈001, 010〉 = {000, 001, 010, 011} < Z2 × Z2 × Z2.

Every (nontrivial) group G has at least two subgroups:

1. the trivial subgroup: {e}
2. the non-proper subgroup: G . (Every group is a subgroup of itself.)

Question

Which groups have only these two subgroups?
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Yet one more example: Z6

It is not difficult to see that the subgroups of Z6 = {0, 1, 2, 3, 4, 5} are

{0}, 〈2〉 = {0, 2, 4}, 〈3〉 = {0, 3}, 〈1〉 = Z6.

Depending our choice of generators and layout of the Cayley diagram, not all of these
subgroups may be “visually obvious.”

Here are two Cayley diagrams for Z6, one generated by 〈1〉 and the other by 〈2, 3〉:

0

1

2

3

4

5 3

51

0

4 2
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One last example: D4

The dihedral group D4 has 10 subgroups, though some of these are isomorphic to
each other:

{e}, 〈r 2〉, 〈f 〉, 〈rf 〉, 〈r 2f 〉, 〈r 3f 〉︸ ︷︷ ︸
order 2

, 〈r〉, 〈r 2, f 〉, 〈r 2, rf 〉︸ ︷︷ ︸
order 4

,D4.

Remark

We can arrange the subgroups in a diagram called a subgroup lattice that shows
which subgroups contain other subgroups. This is best seen by an example.

The subgroup lattice of D4:

D4

zz
zz FF

FF

〈r 2, f 〉

}}
}} CC

CC
〈r〉 〈r 2, rf 〉

zz
zz FF

FF

〈f 〉

QQQQQQQQQQ 〈r 2f 〉
CC

CC
〈r 2〉 〈rf 〉

yy
yy

〈r 3f 〉

llllllllll

〈e〉
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A (terrible) way to find all subgroups

Here is a brute-force method for finding all subgroups of a given group G of order n.

Though this algorithm is horribly inefficient, it makes a good thought exercise.

0. we always have {e} and G as subgroups

1. find all subgroups generated by a single element (“cyclic subgroups”)

2. find all subgroups generated by 2 elements
...

n-1. find all subgroups generated by n − 1 elements

Along the way, we will certainly duplicate subgroups; one reason why this is so
inefficient and impractible.

This algorithm works because every group (and subgroup) has a set of generators.

Soon, we will see how a result known as Lagrange’s theorem greatly narrows down
the possibilities for subgroups.
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