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Homomorphisms

Throughout this course, we’ve said that two groups are isomorphic if for some generating
sets, they have Cayley diagrams with the same structure.

This can be formalized with a special type of function between groups, called a
homomorphism. An isomorphism is simply a bijective homomorphism.

What we called a re-wiring when constructing semidirect products is an automorphism: an
isomorphism from a group to itself.

The Greek roots “homo” and “morph” together mean “same shape.”

There are two situations where homomorphisms arise:

“embeddings”: when one group is a subgroup of another

“quotient maps”: when one group is a quotient of another.

M. Macauley (Clemson) Chapter 4: Maps between groups Math 4120, Modern algebra 2 / 74

mailto:macaule@clemson.edu


Embeddings vs. quotients: A preview

The difference between embeddings and quotient maps can be seen in the subgroup lattice:

Dic10

C10

C4 C4 C4 C4 C4

C2

C5

C1

AGL1(Z5)

D5

C5
C4 C4 C4 C4 C4

C2 C2 C2 C2 C2

C1

In one of these groups, D5 is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.
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A example embedding

When we say Z3 < D3, we really mean that the structure of Z3 shows up in D3.

This can be formalized by a map.

φ : Z3 −→ D3

k 7−→ rk
0

1

2 f

rf

r2f

1

r2

r

In general, a homomomorphism is a function ϕ : G → H with some extra properties.

We will use standard function terminology:

the group G is the domain

the group H is the codomain

the image is what is often called the range:

Im(φ) = φ(G) =
{
φ(g) | g ∈ G

}
.
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The formal definition

Definition
A homomorphism is a function φ : G → H between two groups satisfying

φ(ab) = φ(a)φ(b), for all a, b ∈ G .

Note that the operation a · b is in the domain while φ(a) · φ(b) in the codomain.

For example, in this example the homomorphism condition is φ(a + b) = φ(a) · φ(b).

φ : Z3 −→ D3

k 7−→ rk
0

1

2 f

rf

r2f

1

r2

r

Not only is there a bijective correspondence between the elements in Z3 and those in the
subgroup 〈r〉 of D3, but the relationship between the corresponding nodes is the same.
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Homomorphisms

Remark
Not every function from one group to another is a homomorphism! The condition
φ(ab) = φ(a)φ(b) means that the map φ preserves the structure of G .

The φ(ab) = φ(a)φ(b) condition has visual interpretations on the level of Cayley diagrams
and multiplication tables.

Cayley
tables

Cayley
diagrams

ab = c

Domain
a

c

b

a

b

c

Codomain
φ(a)

φ(c)

φ(b)
φ

φ

φ(a)φ(b)=φ(c)

φ(a)

φ(b)

φ(c)

Note that in the Cayley diagrams, b and φ(b) are paths; they need not just be edges.
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An example

Consider the function φ that reduces an integer modulo 5:

φ : Z −→ Z5 , φ(n) = n (mod 5).

Since the group operation is additive, the “homomorphism property” becomes

φ(a + b) = φ(a) + φ(b) .

In plain English, this just says that one can “first add and then reduce modulo 5,” OR “first
reduce modulo 5 and then add.”

Cayley
tables

Cayley
diagrams

Domain: Z
19

27

8

19

8

27

Codomain: Z5
4

2

3
φ

φ 4

3

2
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Homomorphisms and generators

Remark
If we know where a homomorphism maps the generators of G , we can determine where it
maps all elements of G .

For example, suppose φ : Z3 → Z6 was a homomorphism, with φ(1) = 4. Using this
information, we can deduce:

φ(2) = φ(1+ 1) = φ(1) + φ(1) = 4+ 4 = 2

φ(0) = φ(1+ 2) = φ(1) + φ(2) = 4+ 2 = 0.

Example
Suppose that G = 〈a, b〉, and φ : G → H, and we know φ(a) and φ(b). We can find the
image of any g ∈ G . For example, for g = a3b2ab, we have

φ(g) = φ(aaabbab) = φ(a)φ(a)φ(a)φ(b)φ(b)φ(a)φ(b).

Note that if k ∈ N, then φ(ak ) = φ(a)k . What do you think φ(a−1) is?
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Two basic properties of homomorphisms

Proposition
Let φ : G → H be a homomorphism. Denote the identity of G and H by 1G and 1H .

(i) φ(1G ) = 1H “φ sends the identity to the identity”

(ii) φ(g−1) = φ(g)−1 “φ sends inverses to inverses”

Proof
(i) Pick any g ∈ G . Now, φ(g) ∈ H; observe that

φ(1G )φ(g) = φ(1G · g) = φ(g) = 1H · φ(g) .

Therefore, φ(1G ) = 1H . X

(ii) Take any g ∈ G . Observe that

φ(g)φ(g−1) = φ(gg−1) = φ(1G ) = 1H .

Since φ(g)φ(g−1) = 1H , it follows immediately that φ(g−1) = φ(g)−1. X
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A word of caution

Just because a homomorphism φ : G → H is determined by the image of its generators
does not mean that every such image will work.

For example, let’s try to define a homomorphism φ : Z3 → Z4 by φ(1) = 1. Then we get

φ(2) = φ(1+ 1) = φ(1) + φ(1) = 2,

φ(0) = φ(1+ 1+ 1) = φ(1) + φ(1) + φ(1) = 3 6= 0.

This is impossible, because φ(0) must be 0 ∈ Z4.

That’s not to say that there isn’t a homomorphism φ : Z3 → Z4; note that there is always
the trivial homomorphism between two groups:

φ : G −→ H , φ(g) = 1H for all g ∈ G .

Exercise
Show that there is no embedding φ : Zn ↪→ Z, for n ≥ 2. That is, any such homomorphism
must satisfy φ(1) = 0.
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Types of homomorphisms

Consider the following homomorphism θ : Z3 → C6, defined by θ(n) = r2n:

0

1

2 1

rr2

r3

r4 r5

0 7→ 1

1 7→ r2

2 7→ r4

It is easy to check that θ(a + b) = θ(a)θ(b): The red arrow in Z3 (representing 1) gets
mapped to the 2-step path representing r2 in C6.

A homomorphism φ : G → H that is one-to-one or “injective” is called an embedding: the
group G “embeds” into H as a subgroup. If θ is not one-to-one, then it is a quotient.

If φ(G) = H, then φ is onto, or surjective.

Definition
A homomorphism that is both injective and surjective is an isomorphism.

An automorphism is an isomorphism from a group to itself.
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An example of an isomorphism
We have already seen that D3 is isomorphic to S3.

Which means that there’s as bijective correspondence between these sets: f : D3 → S3.

But not just any bijection will do. Intuitively,

(123) and (132) should be the rotations

(12), (13), and (23) should be the reflections

The identity permutation must be the identity symmetry.

It is easy to verify that the following is an isomorphism:

φ : D3 −→ S3, φ(r) = (123), φ(f ) = (23).

1

r

r2

f

r2f

rf

D3

e

(23)

(123)

(13)

(132)

(12)

S3 1
2 3

f 7→ (23)
(13)(12)

r 7→ (123)

However, there are other isomorphisms between these groups.
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Group representations

We’ve already seen how to represent groups as collections of matrices.

Formally, a representation of a group G is an embedding

φ : G −→ GLn(K)

for some field K (e.g., R, C, Zp, etc.)

For example, the following 8 matrices form group under multiplication, isomorphic to Q8.{
±I , ±

[0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, ±

[0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, ±

[0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]}
.

Formally, we have an embedding φ : Q8 → GL4(R) where

φ(i) =

[0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Notice how we can use the homomorphism property to find the image of the other
elements.
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Kernels and quotient maps

The examples of homomorphisms we’ve seen thus far have all been embeddings.

Now, we’ll looks at ones where φ : G → H is not 1-to-1, which are called quotient maps.

We’ll see how they arise from our quotient process.

Definition
The kernel of a homomorphism φ : G → H is the set

Ker(φ) := φ−1(1H) =
{
k ∈ G | φ(k) = 1H

}
.

The kernel is the “group theoretic” analogue of the nullspace of a matrix.

Another way to define the kernel is as the preimage of the identity.

Definition
If φ : G → H is a homomorphism and h ∈ Im(φ), define the preimage of h to be the set

φ−1(h) :=
{
g ∈ G | φ(g) = h

}
.

Let’s do some examples, and observe what the kernels and preimages are.
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An example of a quotient
Recall that C2 = {e0πi , e1πi} = {1,−1}. Consider the following (quotient) homomorphism:

φ : D4 −→ C2 , defined by φ(r) = 1 and φ(f ) = −1 .

Note that

φ(rk ) = φ(r)k = 1k = 1, φ(rk f ) = φ(rk )φ(f ) = φ(r)kφ(f ) = 1k (−1) = −1.

1

r

r2

r3

f

rf

r2f

r3f

1 r r2 r3 f rf r2f r3f

1

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

1

r3f

f

rf

r2f

r2

r3

1

r

r2f

r3f

f

rf

r3

1

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

1

r

r2

r3

rf

r2f

r3f

f

r3

1

r

r2

r2f

r3f

f

rf

r2

r3

1

r

r3f

f

rf

r2f

r

r2

r3

1

1

r

r2

r3

f

rf

r2f

r3f

1 r r2 r3 f rf r2f r3f

1

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

1

r3f

f

rf

r2f

r2

r3

1

r

r2f

r3f

f

rf

r3

1

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

1

r

r2

r3

rf

r2f

r3f

f

r3

1

r

r2

r2f

r3f

f

rf

r2

r3

1

r

r3f

f

rf

r2f

r

r2

r3

1

1 −1

−1 1

Ker(φ) = φ−1(1) = 〈r〉 (“rotations”), φ−1 = f 〈r〉 (“reflections”).
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An example of a quotient
Define the homomorphism

φ : Q8 −→ V4, φ(i) = v , φ(j) = h.

Since Q8 = 〈i , j〉, we can determine where φ sends the remaining elements:

φ(1) = e

φ(−1) = φ(i2) = φ(i)2 = v2 = e

φ(k) = φ(ij) = φ(i)φ(j) = vh = r

φ(−k) = φ(ji) = φ(j)φ(i) = hv = r

φ(−i) = φ(−1)φ(i) = ev = v

φ(−j) = φ(−1)φ(j) = eh = h

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8

Note that the kernel is the normal subgroup N := Ker(φ) = φ−1(e) = 〈−1〉,and all
preimages are cosets:

φ−1(v) = iN, φ−1(h) = jN, φ−1(r) = kN.
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The fundamental homomorphism theorem
The following is one of the central results in group theory.

Fundamental homomorphism theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient
out by the kernel, and then (ii) relabel the nodes via φ.

G

(Ker φE G)

φ

any homomorphism

G
/
Ker φ

group of
cosets

Imφ

q
quotient
process

i
remaining isomorphism

(“relabeling”)
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Visualizing the FHT via. Cayley diagrams

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8
φ

“quotient map” q

φ = ι ◦ q

N iN

jN kN

Q8/N

ι “relabeling map”

e v

h r

V4
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Visualizing the FHT via. Cayley tables

Here’s another way to think about the homomorphism

φ : Q8 −→ V4, φ(i) = v , φ(j) = h

as the composition of:

a quotient by N = Ker(φ) = 〈−1〉 = {±1},

a relabeling map ι : Q8/N → V4.

1

−1

i

−i

j

−j

k

−k

1 −1 i −i j −j k −k

1

−1

i

−i

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

k

−k

−j

j

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

1

−1

i

−i

k

−k

−j

j

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

±1 ±i ±j ±k

±i ±1 ±k ±j

±j ±k ±1 ±i

±k ±j ±i ±1

ι

1

−1

i

−i

j

−j

k

−k

1 −1 i −i j −j k −k

1

−1

i

−i

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

k

−k

−j

j

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

1

−1

i

−i

k

−k

−j

j

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

e v h r

v e r h

h r e v

r h v e

M. Macauley (Clemson) Chapter 4: Maps between groups Math 4120, Modern algebra 19 / 74

mailto:macaule@clemson.edu


FHT preliminaries

Proposition
The kernel of any homomorphism φ : G → H, is a normal subgroup.

Proof
Let N := Ker(φ). First, we’ll show that N is a subgroup.

Identity: φ(e) = e. X

Closure: φ(ab) = φ(a)φ(b) = e · e = e. X

Inverse: φ(a−1) = φ(a)−1 = e−1 = e. X

Now we’ll show it’s normal. Take any n ∈ N. We’ll show that gng−1 ∈ N for all g ∈ G .

By the homomorphism property,

φ(gng−1) = φ(g)φ(n)φ(g−1) = φ(g) · e · φ(g)−1 = e.

Therefore, gng−1 ∈ Ker(φ), so N E G . �

Key observation
Given any homomorphism φ : G → H, we can always form the quotient group G/Ker(φ).
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FHT preliminaries

Proposition

Let φ : G → H be a homomorphism. Then each preimage φ−1(h) is a coset of Ker(φ).

Proof

Let N = Ker(φ) and take any g ∈ φ−1(h).

We claim that φ−1(h) = gN. We need to verify both ⊆ and ⊇.

“⊆”: Take a ∈ φ−1(h). We need to show that this is in gN.

From basic properties of cosets, we have the equivalences

a ∈ gN ⇐⇒ aN = gN ⇐⇒ g−1aN = N ⇐⇒ g−1a ∈ N.

This last condition is true because

φ(g−1a) = φ(g−1)φ(a) = φ(g)−1φ(a) = h−1 · h = 1H . X

“⊇”: Pick any gn ∈ gN. This is in φ−1(h) because

φ(gn) = φ(g)φ(n) = h · 1H = h. X
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Proof of the FHT

Fundamental homomorphism theorem
If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Proof
We’ll construct an explicit map i : G/Ker(φ) −→ Im(φ) and prove that it’s an isomorphism.

Let N = Ker(φ), and recall that G/N = {gN | g ∈ G}. Define

i : G/N −→ Im(φ) , i : gN 7−→ φ(g) .

• Show i is well-defined : We must show that if aN = bN, then i(aN) = i(bN).

Suppose aN = bN. We have

aN = bN =⇒ b−1aN = N =⇒ b−1a ∈ N .

By definition of b−1a ∈ Ker(φ),

1H = φ(b−1a) = φ(b−1)φ(a) = φ(b)−1 φ(a) =⇒ φ(a) = φ(b) .

By definition of i : i(aN) = φ(a) = φ(b) = i(bN). X
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Proof of FHT (cont.) [Recall: i : G/N → Im(φ) , i : gN 7→ φ(g)]

Proof (cont.)

• Show i is a homomorphism : We must show that i(aN · bN) = i(aN) i(bN).

i(aN · bN) = i(abN) (aN · bN := abN)
= φ(ab) (definition of i)
= φ(a)φ(b) (φ is a homomorphism)
= i(aN) i(bN) (definition of i)

Thus, i is a homomorphism. X

• Show i is surjective (onto) :

Take any element in the codomain (here, Im(φ)). We need to find an element in the
domain (here, G/N) that gets mapped to it by i .

Pick any φ(a) ∈ Im(φ). By defintion, i(aN) = φ(a), hence i is surjective. X
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Proof of FHT (cont.) [Recall: i : G/N → Im(φ) , i : gN 7→ φ(g)]

Proof (cont.)

• Show i is injective (1–1) : We must show that i(aN) = i(bN) implies aN = bN.

Suppose that i(aN) = i(bN). Then

i(aN) = i(bN) =⇒ φ(a) = φ(b) (by definition)
=⇒ φ(b)−1 φ(a) = 1H
=⇒ φ(b−1a) = 1H (φ is a homom.)
=⇒ b−1a ∈ N (definition of Ker(φ))
=⇒ b−1aN = N (aH = H ⇔ a ∈ H)
=⇒ aN = bN

Thus, i is injective. X

In summary, since i : G/N → Im(φ) is a well-defined homomorphism that is injective (1–1)
and surjective (onto), it is an isomorphism.

Therefore, G/N ∼= Im(φ), and the FHT is proven. �
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Consequences of the FHT

Corollary
If φ : G → H is a homomorphism, then Imφ ≤ H.

The two “extreme cases”
If φ : G → H is an embedding, then Ker(φ) = {1G}. The FHT says that

Im(φ) ∼= G/{1G} ∼= G .

If φ : G → H is the trivial map φ(g) = 1H for all h ∈ G , then Ker(φ) = G . The FHT
says that

{1H} = Im(φ) ∼= G/G .

Let’s use the FHT to determine all homomorphisms φ : C4 → C3.

By the FHT, G/Ker φ ∼= Imφ ≤ C3, and so | Imφ| = 1 or 3.

Since Ker φ ≤ C4, Lagrange’s Theorem also tells us that |Ker φ| ∈ {1, 2, 4}, and
hence | Imφ| = |G/Ker φ| ∈ {1, 2, 4}.

Thus, | Imφ| = 1, and so the only homomorphism φ : C4 → C3 is the trivial one.
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Consequences of the FHT

Let’s do a more complicated example: find all homomorphisms φ : Z44 → Z16.

By the FHT,
Z44/Ker(φ) ∼= Im(φ) ≤ Z16.

This means that 44/|Ker(φ)| must be 1, 2, 4, 8, or 16.

Also, |Ker(φ)| must divide 44. We are left with three cases: |Ker(φ)| = 44, 22, or 11.

Reminder
For each d | n, the group Zn has a unique subgroup of order d , which is 〈n/d〉.

Case 1: |Ker(φ)| = 44, which forces | Im(φ)| = 1, and so φ(1) = 0 is the trivial
homomorphism.

Case 2: |Ker(φ)| = 22. By the FHT, | Im(φ)| = 2, which means Im(φ) = {0, 8}, and
so φ(1) = 8.

Case 3: |Ker(φ)| = 11. By the FHT, | Im(φ)| = 4, which means Im(φ) = {0, 4, 8, 12}.

There are two subcases: φ(1) = 4 or φ(1) = 12.
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Consequences of the FHT

Proposition
Let A,B ≤ G , with one of them normalizing the other. Then

|AB| =
|A| · |B|
|A ∩ B|

.

Proof
Define the map

φ : A× B −→ AB, φ(a, b) 7−→ ab.

This is clearly onto, and it’s straightforward to verify that it’s a homomorphism.

To apply the FHT, we need to determine

Ker(φ) =
{
(a, b) | a ∈ A, b ∈ B, ab = e

}
=
{
(a, a−1) | a ∈ A, a−1 ∈ B

}
=
{
(g, g−1) | g ∈ A ∩ B

}
.

All we need here is |Ker(φ)| = |A ∩ B|. By Lagrange’s theorem,

|A× B|
|Ker(φ)|

=
|A× B|
|A ∩ B|

= | Im(φ)| = |AB|. �
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What does “well-defined” really mean?

Recall that we’ve seen the term “well-defined” arise in different contexts:

a well-defined binary operation on a set G/N of cosets,

a well-defined function i : G/N → H from a set (group) of cosets.

In both of these cases, well-defined means that:

our definition doesn’t depend on our choice of coset representative.

Formally:

If N E G , then aN · bN := abN is a well-defined binary operation on the set G/N of
cosets, because

if a1N = a2N and b1N = b2N, then a1b1N = a2b2N.

The map i : G/N → H, where i(aN) = φ(a), is a well-defined homomorphism,
meaning that

if aN = bN, then i(aN) = i(bN) (that is, φ(a) = φ(b)) holds.

Remark
Whenever we define a map and the domain is a quotient, we must show it’s well-defined.
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How to show two groups are isomorphic

The standard way to show G ∼= H is to construct an isomorphism φ : G → H.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique
Suppose we want to show that G/N ∼= H. There are two approaches:

(i) Define a map φ : G/N → H and prove that it is well-defined, a homomorphism, and a
bijection.

(ii) Define a map φ : G → H and prove that it is a homomorphism, a surjection (onto),
and that Ker φ = N.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, Method (ii) works quite well in showing the following:

Z/〈n〉 ∼= Zn;

Q∗/〈−1〉 ∼= Q+;

AB/B ∼= A/(A ∩ B)

G/(A ∩ B) ∼= (G/A)× (G/B) (if G = AB).
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A picture of the isomorphism i : Z/〈12〉 −→ Z12 (from the VGT website)
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The Isomorphism Theorems

The Fundamental homomorphism theorem (FHT) is the first of four basic theorems about
homomorphisms and their structure.

These are commonly called “The Isomorphism Theorems.”

Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subgroups of quotients”

Freshman theorem: Characterizes “quotients of quotients”

Diamond isomorphism theorem: characterizes “quotients of a products by a factor”

These all have analogues for other algebraic structures, e.g., rings, vector spaces, modules,
Lie algebras.

All of these theorems can look messy and unmotivated algebraically.

However, they all have beautiful visual interpretations, especially involving subgroup lattices.
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The correspondence theorem: subgroups of quotients

Given N E G , the quotient G/N has a group structure, via aN · bN = abN.

Moreover, by the FHT theorem, every homomorphism image is a quotient.

Natural question
What are the subgroups of the quotient?

Fortunately, this has a simple answer that is easy to remember.

Correspondence theorem (informal)

The subgroups of the quotient G/N are quotients of the subgroups H ≤ G that contain N.

Moreover, “most properties” about H ≤ G carry over to H/N ≤ G/N.

This is best understood by interpreting the subgroup lattices of G and G/N.

Let’s do some examples for intuition, and then state the correspondence theorem formally.
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The correspondence theorem: subgroups of quotients
Let’s see an example, and compare G = Dic6 with the quotient by N = 〈r3〉.

G/N

s r3s

r2s r5s

rs r4s

1 r3

r2 r5

r r4

G = Dic6

1

rr2

r3

r4 r5

s

rsr2s

r3s

r4s r5s

We know the subgroups structure of G/N =
{
N, rN, r2N, sN, rsN, r2sN

} ∼= D3.

Here another picture illustrating: “the subgroups of the quotient are the quotients of the
subgroups.”

N sN

rN rsN

r2N r2sN

〈rN〉 ≤ G/N

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈r〉/N ≤ G/N

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈r〉 ≤ G
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The correspondence theorem: subgroups of quotients
Here is the subgroup lattice of G = Dic6, and of the quotient G/N, where N = 〈r3〉.

〈r , s〉

〈r〉

〈r3〉

〈r2〉

〈s〉 〈rs〉 〈r2s〉

〈1〉

〈rN, sN〉

〈rN〉

〈N〉

〈sN〉 〈rsN〉 〈r2sN〉

〈r , s〉/〈r3〉

〈r〉/〈r3〉

〈r3〉/〈r3〉

〈s〉/〈r3〉 〈rs〉/〈r3〉 〈r2s〉/〈r3〉

Here another example of: “the subgroups of the quotient are the quotients of the
subgroups.”

N sN

rN rsN

r2N r2sN

〈sN〉 ≤ G/N

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈s〉/N ≤ G/N

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈s〉 ≤ G
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Correspondence theorem (formally)

There is a bijection between subgroups of G/N and subgroups of G that contain N.

Every subgroup of G/N has the form A := A/N for some A satisfying N ≤ A ≤ G .
Moreover, if A,B ≤ G , then

1. A ≤ B if and only if A ≤ B,

2. If A ≤ B, then [B : A] = [B : A],

3. 〈A,B〉 = 〈A,B〉,
4. A ∩ B = A ∩ B,
5. AE G if and only if AE G .

Guiding example

〈e〉

〈r2〉〈r2f 〉〈f 〉 〈rf 〉 〈r3f 〉

〈r2, f 〉 〈r〉 〈r2, rf 〉

D4

〈r2〉/〈r2〉

〈r〉/〈r2〉〈r2, f 〉/〈r2〉 〈r2, rf 〉/〈r2〉

D4/〈r2〉

〈e〉

〈vh〉〈h〉 〈v〉

V4
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The correspondence theorem: subgroups of quotients

Let’s prove the first (main) part of the correspondence theorem.

Correspondence theorem (first part)

The subgroups of the quotient G/N are quotients of the subgroup H ≤ G that contain N.

Proof
Let S be a subgroup of G/N. Then S is a collection of cosets, i.e.,

S =
{
hN | h ∈ H

}
,

for some subset H ⊆ G . We just need to show that H is a subgroup.

We’ll use the one-step subgroup test: take h1N, h2N ∈ S. Then S must also contain

(h1N)(h2N)−1 = (h1N)(h−12 N) = (h1h−12 )N. (1)

That is, h1h−12 ∈ H, which means that H is a subgroup. X

Conversely, suppose that N ≤ H ≤ G . The one-step subgroup test shows that
H/N ≤ G/N; see Eq. (1). �

The other of the correspondence are straightforward and will be left as exercises.
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The freshman theorem: quotients of quotients
The correspondence theorem characterizes the subgroup structure of the quotient G/N.

Every subgroup of G/N is of the form H/N, where N ≤ H ≤ G .

Moreover, if H E G , then H/N E G/N. In this case, we can ask:

What is the quotient group (G/N)/(H/N) isomorphic to?

Freshman theorem
Given a chain N ≤ H ≤ G of normal subgroups of G ,

(G/N)/(H/N) ∼= G/H.

G

〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉=H

〈s〉 〈r4s〉 〈r4〉=N

〈1〉

G/N

〈rs〉/N〈r2, s〉/N 〈r〉/N

〈r4, s〉/N 〈r2s〉/N 〈r2〉/N

〈r4〉/N

G

〈rs〉〈r2, s〉 〈r〉

〈r2〉〈r4, s〉 〈r2s〉

〈s〉 〈r4s〉 〈r4〉

〈1〉
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The freshman theorem: quotients of quotients

Freshman theorem
Given a chain N ≤ H ≤ G of normal subgroups of G ,

(G/N)/(H/N) ∼= G/H.

Proof
This is tailor-made for the FHT. Define the map

φ : G/N −→ G/H, φ : gN 7−→ gH.

• Show φ is well-defined : Suppose g1N = g2N. Then g1 = g2n for some n ∈ N. But
n ∈ H because N ≤ H. Thus, g1H = g2H, i.e., φ(g1N) = φ(g2N). X

• φ is clearly onto and a homomorphism. X

• Apply the FHT:

Ker φ = {gN ∈ G/N | φ(gN) = H}
= {gN ∈ G/N | gH = H}
= {gN ∈ G/N | g ∈ H} = H/N

By the FHT, (G/N)/Ker φ = (G/N)/(H/N) ∼= Imφ = G/H. �
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The freshman theorem: quotients of quotients

For another visualization, consider G = Z6 × Z4 and write elements as strings.

Consider the subgroups N = 〈30, 02〉 ∼= V4 and H = 〈30, 01〉 ∼= Z2 × Z4.

Notice that N ≤ H ≤ G , and H = N ∪ (01+N), and

G/N =
{
N, 01+N, 10+N, 11+N, 20+N, 21+N

}
, H/N = {N, 01+N}

G/H =
{
N ∪ (01+N), (10+N) ∪ (11+N), (20+N) ∪ (21+N)

}
(G/N)/(H/N) =

{
{N, 01+N}, {10+N, 11+N}, {20+N, 21+N}

}
.

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

N ≤ H ≤ G

50 52

20 22
20+N

51 53

21 23
21+N

40 42

10 12
10+N

41 43

11 13
11+N

30 32

00 02
N

31 33

01 03
01+N

G/N consists of 6 cosets
H/N = {N, 01+N}

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

20+H

10+H

H

G/H consists of 3 cosets
(G/N)/(H/N) ∼= G/H
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The diamond isomorphism theorem: quotients of products by factors

Diamond isomorphism theorem
Suppose A,B ≤ G , and that A normalizes B. Then

(i) A ∩ B is a normal subgroup of A.

(ii) The following quotient groups are isomorphic:

AB/B ∼= A/(A ∩ B)

G

AB

A B

A∩B

Proof (sketch)
Define the following map

φ : A −→ AB/B , φ : a 7−→ aB .
If we can show:

1. φ is a homomorphism,

2. φ is surjective (onto),

3. Ker φ = A ∩ B,
then the result will follow immediately from the FHT. The details are left as HW.
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The diamond isomorphism theorem: quotients of products by factors

Let G = Z2 × Z6, and consider subgroups A = 〈(1, 0), (0, 3)〉, and B = 〈(0, 2)〉.

Then G = AB, and A ∩ B = 〈(0, 0)〉.

Let’s interpret the diamond theorem AB/B ∼= A/A ∩ B in terms of the subgroup lattice.

Z2 × Z6

〈(1, 2)〉 〈(1, 1)〉 〈(0, 1)〉

〈(1, 0), (0, 3)〉

〈(0, 2)〉

〈(1, 0)〉 〈(1, 3)〉 〈(0, 3)〉

〈(0, 0)〉

The fact that the subgroup lattice of V4 is diamond shaped is coincidental.
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The diamond isomorphism theorem: quotients of products by factors

Proposition
Suppose H is a subgroup of Sn that is not contained in An. Then exactly half of the
permutations in H are even.

Sn

H An

H ∩ An

2

2

Proof
It suffices to show that [H : H ∩ An] = 2, or equivalently, that H/(H ∩ An) ∼= C2.

Since H � An, the product HAn must be strictly larger, and so HAn = Sn.

By the diamond isomorphism theorem,

H/(H ∩ An) = HAn/An = Sn/An ∼= C2. �
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The “subgroup” and “quotient” operations commute

Key idea
The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group G = SL2(Z3).

〈1〉

〈a3〉

〈a2〉 〈b2〉 〈(ab)2〉 〈(ba)2〉

〈a2b〉 〈aba〉 〈ab2〉

〈a〉 〈b〉 〈ab〉 〈ba〉

〈a2b, ab2〉

G = 〈a, b〉

〈1〉

〈a3〉

〈a2b〉 〈aba〉 〈ab2〉

〈a2b, ab2〉

subgroup H ∼= Q8

〈a3〉/N

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a2b, ab2〉/N

H/N ∼= V4

“quotient of the subgroup”
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The “subgroup” and “quotient” operations commute

Key idea
The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group G = SL2(Z3).

quotient G/N ∼= A4

〈1〉

〈a3〉/N

〈a2〉 〈b2〉 〈(ab)2〉 〈(ba)2〉

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a〉/N 〈b〉/N 〈ab〉/N 〈ba〉/N

〈a2b, ab2〉/N

〈a, b〉/N

V4 ∼= H/N ≤ G/N

〈a3〉/N

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a2b, ab2〉/N

“subgroup of the quotient”
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Commutators

We’ve seen how to divide Z by 〈12〉, thereby “forcing” all multiples of 12 to be zero. This is
one way to construct the integers modulo 12: Z12 ∼= Z/〈12〉.

Now, suppose G is nonabelian. We’d like to divide G by its “non-abelian parts,” making
them zero and leaving only “abelian parts” in the resulting quotient.

A commutator is an element of the form aba−1b−1. Since G is nonabelian, there are
non-identity commutators: aba−1b−1 6= e in G .

ab = ba ∗ ab 6= ba ∗

In this case, the set C := {aba−1b−1 | a, b ∈ G} contains more than the identity.

Definition
The commutator subgroup G ′ of G is

G ′ :=
〈
aba−1b−1 | a, b ∈ G

〉
.

The commutator subgroup is normal in G , and G/G ′ is abelian (homework).
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The abelianization of a subgroup

Definition
The abelianization of G is the quotient group G/G ′.

The commutator subgroup G ′ is the smallest normal subgroup N of G such that G/N is
abelian. [Note that G would be the “largest” such subgroup.]

Equivalently, the quotient G/G ′ is the largest abelian quotient of G . [Note that G/G ∼= 〈e〉
would be the “smallest” such quotient.]

Universal property of commutator subgroups
Suppose f : G → A is a homomorphism to an abelian group A. Then there is a unique
homomorphism h : G/G ′ → A such that f = hq:

G A

G/G ′

f

q h

We say that f “factors through” the abelianization, G/G ′.
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Some examples of abelianizations
By the isormophism theorems, we can usually identitfy the commutator subgroup G and
abelianation by inspection, from the subgroup lattice.

D4

〈r2, f 〉 〈r〉 〈r2, rf 〉

〈f 〉 〈r2f 〉 〈r2〉 〈r3f 〉 〈rf 〉

〈1〉

Dic6

〈r〉

〈r3〉
〈r2〉

〈s〉 〈rs〉 〈sr〉

〈1〉

A4

〈(12)(34), (13)(24)〉

〈(234)〉〈(134)〉〈(124)〉〈(123)〉

〈(12)(34))〉 〈(13)(24)〉 〈(14)(23))〉

〈e〉
SA8

〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉

〈s〉 〈r4s〉 〈r4〉

〈1〉
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Automorphisms

When constructing semidirect products, we defined Aut(Cn) as the rewirings of the Cayley
diagram.

Formally, Aut(G) is the group of automorphisms of G , i.e., isomorphisms from G to itself.

Remarks.

An automorphism is determined by where it sends the generators.

An automorphism φ must send generators to generators. In particular, if G is cyclic,
then it determines a permutation of the set of (all possible) generators.

Examples
1. There is one nontrivial automorphism of Z: the mapping n 7→ −n. Thus, Aut(Z) ∼= C2.

2. There is an automorphism φ : Z5 → Z5 for each choice of φ(1) ∈ {1, 2, 3, 4}. Thus,
Aut(Z5) ∼= C4 or V4. (Which one?)

3. An automorphism φ of V4 = 〈h, v〉 is determined by the image of h and v . There are 3
choices for φ(h), and then 2 choices for φ(v).

Thus, |Aut(V4)| = 6, so it is either C6 ∼= C2 × C3, or S3. (Which one?)
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Automorphism groups of Zn
Recall that the multiplicative group of integers modulo n is

Un :=
{
k ∈ Zn | gcd(n, k) = 1

}
,

where the binary operation is multiplication, modulo n.

Proposition

The automorphism group of Zn is Aut(Zn) =
{
σa | a ∈ Un

} ∼= Un, where

σa : Zn −→ Zn , σa(1) = a .

1σ1

1σ2 1σ3

1σ6

U7 = 〈3〉 ∼= C6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

2

4

6

1

3

5

3

6

2

5

1

4

4

1

5

2

6

3

5

3

1

6

4

2

6

5

4

3

2

1

Aut(C7) = 〈σ3〉 ∼= U7

σ1

σ2

σ3

σ4

σ5

σ6

σ1 σ2 σ3 σ4 σ5 σ6

σ1

σ2

σ3

σ4

σ5

σ6

σ2

σ4

σ6

σ1

σ3

σ5

σ3

σ6

σ2

σ5

σ1

σ4

σ4

σ1

σ5

σ2

σ6

σ3

σ5

σ3

σ1

σ6

σ4

σ2

σ6

σ5

σ4

σ3

σ2

σ1
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Automorphisms of D3

Let’s find all automorphisms of D3 = 〈r , f 〉. We’ll see a very similar example to this when
we study Galois theory.

Clearly, every automorphism φ is completely determined by φ(r) and φ(f ).

Since automorphisms preserve order, if φ ∈ Aut(D3), then

φ(1) = 1 , φ(r) = r or r2︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , or r2f︸ ︷︷ ︸
3 choices

.

Thus, there are at most 2 · 3 = 6 automorphisms of D3.

Let’s try to define two maps, (i) α : D3 → D3 fixing r , and (ii) β : D3 → D3 fixing f :{
α(r) = r
α(f ) = rf

{
β(r) = r2

β(f ) = f

We claim that:

these both define automorphisms (check this!)

these generate six different automorphisms, and thus 〈α, β〉 = Aut(D3).

To determine what group this is isomorphic to, find these six automorphisms, and make a
group presentation and/or multiplication table. Is it abelian?
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Automorphisms of D3

An automorphism can be thought of as a re-wiring of the Cayley diagram.

r id−→ r

f −→ f f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

r α−→ r

f −→ rf f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

r α2−→ r

f −→ r2f f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r

β−→ r2

f −→ f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r
αβ−→ r2

f −→ r2f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r
α2β−→ r2

f −→ rf
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Automorphisms of D3

Here is the Cayley table and Cayley diagram of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

It is purely coincidence that Aut(D3) ∼= D3. For example,

Aut(Z5) ∼= U5 ∼= C4 , Aut(Z7) ∼= U7 ∼= C6 , Aut(Z8) ∼= U6 ∼= C2 × C2 .
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Automorphisms of D3

Here is the Cayley table and Cayley diagram of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

It is purely coincidence that Aut(D3) ∼= D3. For example,

Aut(Z5) ∼= U5 ∼= C4 , Aut(Z7) ∼= U7 ∼= C6 , Aut(Z8) ∼= U6 ∼= C2 × C2 .
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Automorphisms of V4 = 〈h, v〉

The following permutations are both automorphisms:

α : h v hv and β : h v hv

h id7−→ h

v 7−→ v

hv 7−→ hv

e

v

h

hv

h α7−→ v

v 7−→ hv

hv 7−→ h

e

v

h

hv

h α27−→ hv

v 7−→ h

hv 7−→ v

e

v

h

hv

h
β7−→ v

v 7−→ h

hv 7−→ hv

e

v

h

hv

h
αβ7−→ h

v 7−→ hv

hv 7−→ v

e

v

h

hv

h
α2β7−→ hv

v 7−→ v

hv 7−→ h

e

v

h

hv
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Automorphisms of V4 = 〈h, v〉

Here is the multiplication table and Cayley diagram of Aut(V4) = 〈α, β〉 ∼= S3 ∼= D3.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

Recall that α and β can be thought of as the permutations h v hv and h v hv and so

Aut(G) ↪→ Perm(G) ∼= Sn always holds.
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Inner and outer automorphisms
Earlier in this class, we conjugated an entire group G by a fixed elements x ∈ G .

This is an example of an inner automorphism. Here are two examples:

xD4x−1

x〈r2, f 〉x−1 x〈r〉x−1 x〈r2, rf 〉x−1

x〈f 〉x−1 x〈r2f 〉x−1 x〈r2〉x−1 x〈r3f 〉x−1 x〈rf 〉x−1

x〈1〉x−1

xQ8x−1

x〈i〉x−1 x〈j〉x−1 x〈k〉x−1

x〈−1〉x−1

x 〈1〉 x−1

This permutes subgroups within a conjugacy class: r〈f 〉r−1=〈r2f 〉.

Every subgroup of Q8 is normal, thus any inner automorphism fixes every subgroup.

However, there is an automorphism of Q8 that permutates subgroups, defined by

φ : Q8 −→ Q8, φ(i) = j , φ(j) = k ⇒ φ(k) = φ(ij) = φ(i)φ(j) = jk = i .

This is called an outer automorphism.
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The inner automorphism group

Definition
An inner automorphism of G is an automorphism ϕx ∈ Aut(G) defined by

ϕx (g) = xgx−1, for some x ∈ G .

The inner automorphisms of G form a group, denoted Inn(G). (exercise)

Proposition (exercise)

Inn(G) is a normal subgroup of Aut(G).

Remarks
If z ∈ Z(G), then ϕz ∈ Inn(G) is trivial.

If x = yz for some Z(G), then ϕx = ϕy in Inn(G):

ϕx (g) = xgx−1 = (yz)g(yz)−1 = y(zgz−1)y−1 = ygy−1.

That is, if x and y are in the same coset of Z(G), then ϕx = ϕy .

The converse holds as well, i.e., this completely characterizes distinct inner automorphisms.
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The inner automorphism group

Key point
Two elements x , y ∈ G are in the same coset of Z(G) if and only if ϕx = ϕy in Inn(G).

Proposition
In any group G , we have G/Z(G) ∼= Inn(G).

Proof
Consider the map

f : G −→ Inn(G), x 7−→ ϕx ,

It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that
Ker(f ) = Z(G).

The result is now immediate from the FHT. �

We just saw that Aut(D3) ∼= D3, and we know that Z(D3) = 〈1〉. Therefore,

Inn(D3) ∼= D3/Z(D3) ∼= D3 ∼= Aut(D3),

i.e., every automorphism is inner.
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Inner automorphisms of D3

Let’s label each φ ∈ Aut(D3) with the corresponding inner automorphism.

r Id−→ r

f −→ f f

rf

r2f

1

r2

r

ϕ1

1

r2f

r2

rf

r

f

r α−→ r

f −→ rf f

rf

r2f

1

r2

r

ϕr2

1

r2f

r2

rf

r

f

r α2−→ r

f −→ r2f f

rf

r2f

1

r2

r

ϕr

1

r2f

r2

rf

r

f

f

rf

r2f

1

r2

r

ϕf

1

r2f

r2

rf

r

f
r

β−→ r2

f −→ f

f

rf

r2f

1

r2

r

ϕrf

1

r2f

r2

rf

r

f
r
αβ−→ r2

f −→ r2f

f

rf

r2f

1

r2

r

ϕr2f

1

r2f

r2

rf

r

f
r
α2β−→ r2

f −→ rf
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Automorphisms of D4
Every automorphism of D4 = 〈r , f 〉 is determined by where it sends the generators:

φ(r) = r or r3︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , r2f , r3f , or r2︸ ︷︷ ︸
5 choices

.

Therefore |Aut(D4)| ≤ 10. But we also know:

D4

〈r2, f 〉 〈r〉 〈r2, rf 〉

〈f 〉 〈r2f 〉 〈r2〉 〈r3f 〉 〈rf 〉

〈1〉

Inn(D4) ∼= D4/〈r2〉 ∼= V4

Z rZ fZ rfZ

1

r2

r

r3

f

r2f

rf

r3f

cosets of Z(D4) are
in bijection with inner
automorphisms of D4

cl(1)

cl(r2)

cl(r) cl(f ) cl(rf )

1

r2

r

r3

f

r2f

rf

r3f

inner automorphisms of
D4 permute elements

within conjugacy classes

Since Inn(D4) ≤ Aut(D4), we must have either |Aut(D4)| = 4 or 8. It’s easy to check that

α : D4 −→ D4, α(r) = r , α(f ) = rf

is an (outer) automorphism, which swaps the “two types” of reflections of the square. Thus,

Aut(D4) =
{
Id , ϕr , ϕf , ϕrf , α, ϕrα, ϕf α, ϕrf α

}
= Inn(D4) ∪ Inn(D4)α ∼= D4.
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Inner and outer automorphisms of D4

Inn(D4) = 〈ϕr , ϕf 〉 Inn(D4)α

Id = ϕ1
1

r2

r

r3

f r2f

rf r3f

ϕr
1

r2

r

r3

f r2f

rf r3f

ϕf
1

r2

r

r3

f r2f

rf r3f

ϕrf
1

r2

r

r3

f r2f

rf r3f

α
1

r2

r

r3

f r2f

rf r3f

ϕrα
1

r2

r

r3

f r2f

rf r3f

ϕfα
1

r2

r

r3

f r2f

rf r3f

ϕrfα
1

r2

r

r3

f r2f

rf r3f
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The outer automorphism group

Definition
An outer automorphism of G is any automorphism that is not inner.

The outer automorphism group of G is the quotient Out(G) := Aut(G)/ Inn(G).

Aut(D4)

Inn(D4)=〈ϕr , ϕf 〉 〈α〉 〈ϕr , ϕf α〉

〈ϕf 〉 〈ϕrf 〉 〈ϕr 〉 〈ϕf α〉 〈ϕrf α〉

〈Id〉

Out(D4) ∼=C2

ϕrf

ϕf Id

ϕr

ϕf α

ϕrf α ϕrα

α

Aut(D4) ∼= Inn(D4)oOut(D4)

Note that there are four outer automorphisms, but |Out(D4)| = 2.
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Class automorphisms

Proposition (exercise)

Automorphisms permute conjugacy classes. That is, g, h ∈ G conjugate if and only if ϕ(g)
and ϕ(h) are conjugate.

It is natural to ask if an automorphism being inner is equivalent to being the identity
permutation on conjugacy classes.

In other words:

“ if φ ∈ Aut(G) sends every element to a conjugate, must φ ∈ Inn(G)?”

The answer is “no”. Burnside found examples of groups of order at least 729 that admit
such an automorphism.

Definition
A class automorphism is an automorphism that sends every element to another in its
conjugacy class.

In 1947, G.E. Wall found a group of order 32 with an outer class automorphisms
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Revisiting semidirect products

Earlier in this class, we constructed the semidirect product of two groups visually, using an
inflation method.

We had not yet formalized automorphism, and so it was in terms of re-wirings, and we only
really understood those for Cn.

We took two groups A (for “automorphism”) and B (for “balloon”), and a labeling map

θ : B −→ Aut(A)

that labeled each inflated node b ∈ B with a rewiring ϕ ∈ Aut(A).

Of course, this can all be defined algebraically.

Definition
The (external) semidirect product Aoθ B of A and B, with respect to the homomorphism

θ : B −→ Aut(A),

is on the underlying set A× B, where the operation is defined as

(a1, b1)(a2, b2) = (a1θ(b1)a2, b1b2).

The isomorphic group on B × A by swapping the coordinates above is written B nθ A.
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An example: the direct product C5 × C4

〈
a, b | a5 = b4 = 1, ab = ba

〉
(a1, b1) · (a2, b2) = (a1a2, b1b2)

a1b1 · a2b2 = a1a2b1b2

1. follow the b1-path and a1-path in either order

2. we’re now at the a1-node in the b1-balloon.

3. follow the b2-path and a2-path in either order.

1

a

a2

a3

a4

ϕ0

b

ab

a2b

a3b
a4b

ϕ0 b2

ab2

a2b2

a3b2

a4b2

ϕ0

b3

ab3

a2b3

a3b3

a4b3

ϕ0
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An example: the semidirect product C5 oθ C4

〈
a, b | a5 = b4 = 1, ab = ba3

〉
(a1, b1) · (a2, b2) = (a1θ(b1)a2, b1b2)

a1b1 · a2b2 = a1ϕi (a2)b1b2

1. follow the b1-path and a1-path in either order

2. we’re now at the a1-node in the b1-balloon.

3. re-wire the A-Cayley diagram via θ(b1) ∈ Aut(A)

4. follow the b2-path and a2-path in either order.

1

a

a2

a3

a4

ϕ0

b

ab

a2b

a3b
a4b

ϕ1 b2

ab2

a2b2

a3b2

a4b2

ϕ2

b3

ab3

a2b3

a3b3

a4b3

ϕ3
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Revisiting semidirect products

Recall how to multipy in Aoθ B:

(a1, b1)(a2, b2) = (a1θ(b1)a2, b1b2).

Lemma
The subgroup A× {1} is normal in Aoθ B.

Proof
Let’s conjugate an arbitrary element (g, 1) ∈ A× {1} by an element (a, b) ∈ Aoθ B.

(a, b)(x , 1)(a, b)−1 = (a θ(b)g, b)(a−1, b−1) = (a θ(b)g θ(b)a−1︸ ︷︷ ︸
∈A

, 1) ∈ A× {1}.

Not all books use the same notation for semidirect product. Ours is motivated by:

In A× B, both factors are normal (technically, A× {1} and {1} × B).

In Ao B, the group on the “open” side of o is normal.
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Internal products

Previously, we’ve looked at outer products: taking two unrelated groups and constructing a
direct or semidirect product.

Now, we’ll explore when a group G = NH is isomorphic to a direct or semidirect product.

These are called internal products. Let’s see two examples:

ϕ0

ϕ0

θ0 : r 7→ ϕ0

1 r2 r4

r3 r5 r

C6 = NH ∼= N × H

G=C6

N=〈r2〉

H=〈r3〉

ϕ0

ϕ1

θ1 : r 7→ ϕ

1 r r2

f r2f rf

D3 = NH ∼= N oθ H

G=D3

N=〈r〉

H=〈f〉

Questions
Can we characterize when NH ∼= N × H and/or NH ∼= N oθ H?
If NH ∼= N oθ H, then what is the map θ : H → Aut(N)?
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Internal direct products
When G = NH is isomorphic to N × H, we have an isomorphism

i : N × H −→ NH, i : (n, h) 7−→ nh.

Since N×{1} and {1}×H are normal in N×H, the subgroups N and H are normal in NH.

Recall that earlier, we showed that

|NH| =
|N| · |H|
|N ∩ H|

,

and so it follows that if NH ∼= N × H, then N ∩ H = {e}.

Theorem
Let N,H ≤ G . Then G ∼= N × H iff the following conditions hold:

(i) N and H are normal in G

(ii) N ∩ H = {e}
(iii) G = NH.

Remark
This has a very nice interpretation in terms of subgroup lattices! Groups for which (ii) and
(iii) hold are called lattice conjugates.
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Internal semidirect products

When G = NH is isomorphic to N oθ H, we have an isomorphism

i : N oθ H −→ NH, i : (n, h) 7−→ nh.

This time, only N × {1} needs to be normal in N × H, and so N E NH.

As before, from

|NH| =
|N| · |H|
|N ∩ H|

,

we conclude that if NH ∼= N oθ H, then N ∩ H = {e}.

Theorem
Let N,H ≤ G . Then G ∼= N o H iff the following conditions hold:

(i) N is normal in G

(ii) N ∩ H = {e}
(iii) G = NH,

and the homomorphism θ sends h to the inner automorphism ϕh:

θ : H −→ Aut(N), θ : h 7−→
(
n

ϕh7−→ hnh−1
)
.

Let’s do several examples for intution, before proving this.
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Examples of internal semidirect products

Q16

〈r2, s〉 〈r〉 〈r2, rs〉

〈s〉 〈sr2〉 〈r2〉 〈sr〉 〈sr3〉

〈r4〉

〈1〉

SD8

〈r2, s〉 〈r〉 〈r2, rs〉

〈r4, s〉 〈r2s, r4〉 〈r2〉 〈rs〉 〈r3s〉

〈r4〉〈s〉 〈r4s〉 〈r2s〉 〈r6s〉

〈1〉

Observations
The group SD8 decomposes as a semidirect product several ways:

N = 〈r〉 ∼= C8, H = 〈s〉 ∼= C2, SD8 = NH ∼= C8 oθ3 C2.

or alternatively,

N = 〈r2, rs〉 ∼= Q8, H = 〈s〉 ∼= C2, SD8 = NH ∼= Q8 oθ′ C2.

The group Q16 does not decompose as a semidirect product!
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Semidihedral groups as semidirect products

s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

C8 s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

Q8 s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

Q8

SD8

〈r2, s〉 〈r〉 〈r2, rs〉

〈r4, s〉 〈r2s, r4〉 〈r2〉 〈rs〉 〈r3s〉

〈r4〉〈s〉 〈r4s〉 〈r2s〉 〈r6s〉

〈1〉

SD8 ∼= 〈r〉o 〈s〉 ∼= C8 o C2

SD8 ∼= 〈r2, rs〉o 〈s〉 ∼= Q8 o C2
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Generalized quaternion groups

Recall that a generalized quaternion group is a dicyclic group whose order is a power of 2.

It’s not hard to see that r8 = s2 = −1 is contained in every cyclic subgroup.

s

rs

r2s

r3s
r4s

r5s

r6s

r7s

r8s

r9s

r10s

r11s
r12s

r13s

r14s

r15s

1

r

r2

r3
r4

r5

r6

r7

r8

r9

r10

r11
r12

r13

r14

r15

Q32

〈r2, s〉 〈r〉 〈r2, sr〉

〈r4, s〉 〈r4, sr2〉 〈r2〉 〈r4, sr3〉 〈r4, sr5〉

〈s〉 〈sr4〉 〈sr2〉 〈sr6〉 〈r4〉 〈sr7〉 〈sr3〉 〈sr5〉 〈sr〉

〈r8〉

〈1〉

Therefore, Q2n 6∼= N o H for any of its nontrivial subgroups.
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Internal semidirect products and inner automorphisms

Theorem
Let N,H ≤ G . Then G ∼= N o H iff the following conditions hold:

(i) N is normal in G

(ii) N ∩ H = {e}
(iii) G = NH,

and the homomorphism θ sends h to the inner automorphism ϕh:

θ : H −→ Aut(N), θ : h 7−→
(
n

ϕh7−→ hnh−1
)
.

Proof
We only need to establish that θ sends h 7→ ϕh.

Take n1h1 and n2h2 in NH. Their product is

(n1h1)(n2h2) = n1θ(h1)n2h1h2

for some θ(h1) ∈ Aut(N).

To see why θ(h1) is the inner automorphism ϕh1 , note that

n1ϕh1 (n2)h1h2 = n1(h1n2h−11 )h1h2 = (n1h1)(n2h2). �
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