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Overview

Intuitively, a group action occurs when a group G “naturally permutes” a set S of states.

For example:

The “Rubik’s cube group” consists of the 4.3× 1019 actions that permutate the
4.3× 1019 configurations of the cube.

The group D4 consists of the 8 symmetries of the square. These symmetries are
actions that permute the 8 configurations of the square.

Group actions help us understand the interplay between the actual group of actions and
sets of objects that they “rearrange.”

There are many other examples of groups that “act on” sets of objects. We will see
examples when the group and the set have different sizes.

The rich theory of group actions can be used to prove many deep results in group theory.

We have actually already seen many group actions, without knowing it, such as:

groups acting on themselves by multiplication

groups acting on themselves by conjugation

groups acting on their subgroup by conjugation

groups acting on cosets by multiplication.
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Actions vs. configurations

The group D4 can be thought of as the 8 symmetries of the square:
1 2
4 3

There is a subtle but important distinction to make, between the actual 8 symmetries of
the square, and the 8 configurations.

For example, the 8 symmetries (alternatively, “actions”) can be thought of as

1, r , r2, r3, f , rf , r2f , r3f .

The 8 configurations (or states) of the square are the following:

1 2
4 3

4 1
3 2

3 4
2 1

2 3
1 4

2 1
3 4

3 2
4 1

4 3
1 2

1 4
2 3

When we were just learning about groups, we made an action diagram.

The vertices corresponded to the states.

The edges corresponded to generators.

The paths corresponded to actions (group elements).
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Action diagrams

Here is the action diagram of the group D4 = 〈r , f 〉:

1 2
4 3

4 1
3 2

3 4
2 1

2 3
1 4

2 1
3 4

3 2
4 1

4 3
1 2

1 4
2 3

In the beginning of this course, we picked a configuration to be the “solved state,” and this
gave us a bijection between configurations and actions (group elements).

The resulting diagram was a Cayley diagram. In this section, we’ll skip this step.
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Actions diagrams

In all of the examples we saw in the beginning of the course, we had a bijective
correspondence between actions and states. This need not always happen!

Suppose we have a size-7 set consisting of the following “binary squares.”

S =

{ }
, , , , , ,

0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

0 1
0 1

0 0
1 1

1 0
1 0

The group D4 = 〈r , f 〉 “acts on S” as follows:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

The action diagram above has some properties of Cayley diagrams, but there are some
fundamental differences as well.
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The “group switchboard” analogy

Suppose we have a “switchboard” for G , with every element g ∈ G having a “button.”

If a ∈ G , then pressing the a-button rearranges the objects in our set S. In fact, it is a
permutation of S; call it φ(a).

If b ∈ G , then pressing the b-button rearranges the objects in S a different way. Call this
permutation φ(b).

The element ab ∈ G also has a button. We require that pressing the ab-button yields the
same result as pressing the a-button, followed by the b-button. That is,

φ(ab) = φ(a)φ(b) , for all a, b ∈ G .

Let Perm(S) be the group of permutations of S. Thus, if |S| = n, then Perm(S) ∼= Sn.
(We typically think of Sn as the permutations of {1, 2, . . . , n}.)

Definition
A group G acts on a set S if there is a homomorphism φ : G → Perm(S).
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The “group switchboard” analogy

In our binary square example, pressing the r -button and f -button permutes S as follows:

φ(r) : 0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

1 0
1 0

0 0
1 1

0 1
0 1

φ(f ) : 0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

1 0
1 0

0 0
1 1

0 1
0 1

Observe how these permutations are encoded in the action diagram:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 7 / 91

mailto:macaule@clemson.edu


Left actions vs. right actions (an annoyance we can deal with)

As we’ve defined group actions, “pressing the a-button followed by the b-button should be
the same as pressing the ab-button.”

However, sometimes it has to be the same as “pressing the ba-button.”

This is best seen by an example. Suppose our action is conjugation:

H aHa−1 baHa−1b−1
conjugate

by a
conjugate

by b

conjugate by ba

φ(a)φ(b) = φ(ba)

“Left group action”

H a−1Ha b−1a−1Hab

conjugate
by a

conjugate
by b

conjugate by ab

φ(a)φ(b) = φ(ab)

“Right group action”

We’ll call aHa−1 the left conjugate of H by a, and a−1Ha the right conjugate.

Some books forgo our “φ-notation” and use the following notation to distinguish left vs.
right group actions:

g.(h.s) = (gh).s , (s.g).h = s.(gh) .

We’ll usually keep the φ, and write φ(g)φ(h)s = φ(gh)s and s.φ(g)φ(h) = s.φ(gh). As with
groups, the “dot” will be optional.
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Left actions vs. right actions (an annoyance we can deal with)

Alternative definition (other textbooks)
A right group action is a mapping

G × S −→ S , (a, s) 7−→ s.a

such that

s.(ab) = (s.a).b, for all a, b ∈ G and s ∈ S

s.e = s, for all s ∈ S.

A left group action can be defined similarly.

Pretty much all theorems for left actions hold for right actions.

Generally, each left action has a related right action. We will use right actions, and write

s.φ(g)

for “the element of S that the permutation φ(g) sends s to,” i.e., where pressing the
g-button sends s.

If we have a left action, we’ll write φ(g).s.
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Cayley diagrams as action diagrams

Every Cayley diagram is the action diagram of a particular (right) group action.

For example, consider the group G = D4 = 〈r , f 〉 acting on itself. That is,

S = D4 =
{
1, r , r2, r3, f , rf , r2f , r3f

}
.

Suppose that pressing the g-button on our “group switchboard” multiplies every element on
the right by g.

Here is the action diagram:

1

r

r2

r3

f

r3f

r2f

rf

We say that “G acts on itself by right-multiplication.”
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Five features of every group action

Every group action has five fundamental features that we will always try to understand.

There are several ways to classify them. For example:

three are subsets of S

two are subgroups of G .

Another way to classify them is by local vs. global:

three are features of individual group or set elements (we’ll write in lowercase)

two are features of the homomorphism φ. (we’ll write in Uppercase)

We will see parallels within and between these classes.

For example, two “local” features will be “dual” to each other, as will the global features.

Also, our global features can be expressed as intersections of our local features, either
ranging over all s ∈ S, or over all g ∈ G .

We’ll start by exploring the three local features.
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Two local features: orbits and stabilizers

Suppose G acts on set S, and pick some s ∈ S. We can ask two questions about it:

(i) What other states (in S) are reachable from s? (We call this the orbit of s.)

(ii) What group elements (in G) fix s? (We call this the stabilizer of s.)

Definition
Suppose that G acts on a set S (on the right) via φ : G → Perm(S).

(i) The orbit of s ∈ S is the set

orb(s) =
{
s.φ(g) | g ∈ G

}
.

(ii) The stabilizer of s in G is

stab(s) =
{
g ∈ G | s.φ(g) = s

}
.

In terms of the action diagram
(i) The orbit of s ∈ S is the connected component containing s.

(ii) The stabilizer of s ∈ S are the group elements whose paths start and end at s;
“ loops.”
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The third local feature: fixed point sets
Our first two local features were specific to a certain element s ∈ S.

Our last local feature is defined for each group element g ∈ G . A natural question to ask is:

(iii) What states (in S) does g fix?

Definition
Suppose that G acts on a set S (on the right) via φ : G → Perm(S).

(iii) The fixed point set of g ∈ G are the elements s ∈ S fixed by g:

fix(g) =
{
s ∈ S | s.φ(g) = s

}
.

In terms of the action diagram
(iii) The fixed point set of g ∈ S are the nodes from which the g-paths are loops.

In terms of the “group switchboard analogy”
(i) The orbit of s ∈ S are the elements in S the can be obtained by pressing some

combination of buttons.

(ii) The stabilizer of s ∈ S consists of the buttons that have no effect on s.

(iii) The fixed point set of g ∈ G are the elements in S that don’t move when we press
the g-button.
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Three local features: orbits, stabilizers, and fixed point sets
The orbits of our running example are the 3 connected components.

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

The stabilizers are:

stab
( )

=D4,
0 0
0 0

stab
( )

=0 1
1 0

stab
( )

1 0
0 1

= {1, r2, rf , r3f }

stab
( )

=0 0
1 1

stab
( )

1 1
0 0

= 〈f 〉

stab
( )

=0 1
0 1

stab
( )

1 1
0 0 = 〈r2f 〉

The fixed point sets are fix(1) = S, and

fix(r)=fix(r3)=
{

0 0
0 0

}
fix(r2)=fix(rf )=fix(r3f )=

{
0 0
0 0 ,

0 1
1 0 ,

1 0
0 1

}
fix(f )=

{
0 0
0 0 ,

0 0
1 1 ,

1 1
0 0

}
fix(r2f )=

{
0 0
0 0 ,

0 1
0 1 ,

1 0
1 0

}
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Local duality: stabilizers vs. fixed point sets
Consider the following table, where a checkmark at (g, s) means g fixes s.

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

1 X X X X X X X

r X

r2 X X X

r3 X

f X X X

rf X X X

r2f X X X

r3f X X X

the stablizers can be read off the columns: group elements that fix s ∈ S

the fixed point sets can be read off the rows: set elements fixed by g ∈ G .
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The stabilizer subgroup

Notice how in our example, the stabilizer of each s ∈ S was a subgroup.

This holds true for any action.

Proposition
For any s ∈ S, the set stab(s) is a subgroup of G .

Proof (outline)

To show stab(s) is a group, we need to show three things:

(i) Identity. That is, s.φ(e) = s.

(ii) Inverses. That is, if s.φ(g) = s, then s.φ(g−1) = s.

(iii) Closure. That is, if s.φ(g) = s and s.φ(h) = s, then s.φ(gh) = s.

Alternatively, it suffices to show that if s.φ(g) = s and s.φ(h) = s, then s.φ(gh−1) = s,

You’ll do this on the homework.

All three of these are very intuitive in our our switchboard analogy.
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The stabilizer subgroup

As we’ve seen, elements in the same orbit can have different stabilizers.

Proposition (HW exercise)
Set elements in the same orbit have conjugate stabilizers:

stab(s.φ(g)) = g−1 stab(s)g, for all g ∈ G and s ∈ S.

In other words, if x stabilizes s, then g−1xg stabilizes s.φ(g).

Here are several ways to visualize what this means and why.

s s

s ′ s ′

φ(x)

φ(g) φ(g)

φ(g−1xg)

010
0 0 0

φ(f )

φ(r)

010
0 0 0

φ(r)

001
0 0 0

φ(r−1fr) = φ(r4f )
001

0 0 0

s

x

s ′

g

In other words, if x is a loop from s, and s
g−→ s ′, then g−1xg is a loop from s ′.

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 17 / 91

mailto:macaule@clemson.edu


Two global features: fixed points and the kernel
Our last two features are properties of the action φ, rather than of specific elements.

The first definition is new, and the second is an familiar concept in this new setting.

Definition
Suppose that G acts on a set S via φ : G → Perm(S).

(iv) The kernel of the action is the set

Ker(φ) =
{
k ∈ G | φ(k) = e

}
=
{
k ∈ G | s.φ(k) = s for all s ∈ S

}
.

(v) The fixed points of the action, denoted Fix(φ), are the orbits of size 1:

Fix(φ) =
{
s ∈ S | s.φ(g) = s for all g ∈ G

}
.

Proposition (global duality: fixed points vs. kernel)

Suppose that G acts on a set S via φ : G → Perm(S). Then

Ker(φ) =
⋂
s∈S

stab(s), and Fix(φ) =
⋂
g∈G

fix(g).

Let’s also write Orb(φ) for the set of orbits of φ.
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Two global features: fixed points and the kernel

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

In terms of the action diagram
(iv) The kernel of φ are the paths that are “loops from every s ∈ S.”

(v) The fixed points of φ are the size-1 connected components.

In terms of the group switchboard analogy
(iv) The kernel of φ are the “broken buttons”; those g ∈ G that have no effect on any s.

(v) The fixed points of φ are those s ∈ S that are not moved by pressing any button.
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Global duality: fixed points vs. kernel
Consider the following table, where a checkmark at (g, s) means g fixes s.

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

1 X X X X X X X

r X

r2 X X X

r3 X

f X X X

rf X X X

r2f X X X

r3f X X X

the fixed point set consist of columns with all checkmarks: set elts fixed by everything

the kernel consists of the rows with all checkmarks: group elements that fix everything.
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Two theorems on orbits, and their consequences

Our binary square example gives us some key intutition about group actions.

Qualitative observations
elements in larger orbits tend to have smaller stabilizers, and vice-versa

action tables with more “checkmarks” tend to have more orbits

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems
1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.

2. Orbit-counting theorem: the number of orbits is the average number of things fixed by
a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:

The size of the conjugacy class clG (H) is the index of the normalizer of H ≤ G

The size of the conjugacy class clG (x) is the index of the centralizer of x ∈ G

We can also determine the number of conjugacy classes from the orbit-counting theorem.
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Our first theorem on orbits

Orbit-stabilizer theorem
For any group action φ : G → Perm(S), and any s ∈ S,

| orb(s)| · | stab(s)| = |G | .

Equivalently, the size of an orbit is | orb(s)| = [G : stab(s)].

Proof
Goal: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).

That is, “two g-buttons send s to the same place iff they’re in the same coset”.

Let s =

stab(s) = 〈f 〉.

0 0
1 1

1

f

r

fr

r2

fr2

r3

fr3

H Hr Hr2 Hr3

G = D4 and H = 〈f 〉 0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

Note that s.φ(g) = s.φ(k) iff g and k are in the same right coset of H in G .
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The orbit-stabilizer theorem: | orb(s)| · | stab(s)| = |G |

Proof (cont.)

Throughout, let H = stab(s).

“⇒” If two elements send s to the same place, then they are in the same coset.

Suppose g, k ∈ G both send s to the same element of S. This means:

s.φ(g) = s.φ(k) =⇒ s.φ(g)φ(k)−1 = s
=⇒ s.φ(g)φ(k−1) = s
=⇒ s.φ(gk−1) = s (i.e., gk−1 stabilizes s)
=⇒ gk−1 ∈ H (recall that H = stab(s))
=⇒ Hgk−1 = H
=⇒ Hg = Hk

“⇐” If two elements are in the same coset, then they send s to the same place.

Take two elements g, k ∈ G in the same right coset of H. This means Hg = Hk.

This is the last line of the proof of the forward direction, above. We can change each =⇒
into ⇐⇒, and thus conclude that s.φ(g) = s.φ(k). �

If we have instead, a left group action, the proof carries through but using left cosets.
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Our second theorem on orbits

Orbit-counting theorem
Let a finite group G act on a set S via φ : G → Perm(S). Then

|Orb(φ)| =
1
|G |

∑
g∈G
| fix(g)|.

This says that the “average number of checkmarks per row” is the number of orbits:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

1 X X X X X X X

r X

r2 X X X

r3 X

f X X X

rf X X X

r2f X X X

r3f X X X
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Orbit-counting theorem: |Orb(φ)| =
1
|G |

∑
g∈G
| fix(g)|.

Proof
Let’s first count the number of checkmarks in the action table, three ways:∑

g∈G
| fix(g)|

︸ ︷︷ ︸
count by rows

=
∣∣∣{(g, s) ∈ G × S | s.φ(g) = s

}∣∣∣ =
∑
s∈S
| stab(s)|

︸ ︷︷ ︸
count by columns

.

By the orbit-stabilizer theorem, we can replace each | stab(s)| with |G |/| orb(s)|:

∑
s∈S
| stab(s)| =

∑
s∈S

|G |
| orb(s)|

= |G |
∑
s∈S

1
| orb(s)|

.

Let’s express this sum over all disjoint orbits S = O1 ∪ · · · ∪ Ok separately:

|G |
∑
s∈S

1
| orb(s)|

= |G |
∑

O∈Orb(φ)

(∑
s∈O

1
| orb(s)|︸ ︷︷ ︸

=1 (why?)

)
= |G |

∑
O∈Orb(φ)

1 = |G | · |Orb(φ)|.

Equating this last term with the first term gives the desired result. �
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Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or
cosets of some fixed H ≤ G .

Often, the orbits, stabilizers, and fixed points of these actions are familiar algebraic objects.

A number of deep theorems have a slick proof via a clever group action.

Here are common examples of group actions:

G acts on itself by right-multiplication (or left-multiplication).

G acts on itself by conjugation.

G acts on its subgroups by conjugation.

G acts on the right-cosets of a fixed subgroup H ≤ G by right-multiplication.

For each of these, we’ll characterize the orbits, stabilizers, fixed point sets, fixed points,
and kernel.
We’ll encounter familiar objects such as conjugacy classes, normalizers, stabilziers, and
normal subgroups, as some of our “five fundamental features”.

Theorems that we have observed but haven’t been able to prove yet will fall in our lap!
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Groups acting on themselves by right-multiplication
The group G acts on itself (that is, S = G) by right-multiplication:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each x 7→ xg.

there is only one orbit: orb(x) = G , for all x ∈ G

the stabilizer of each x ∈ G is stab(x) = 〈e〉
the fixed point set of each g ∈ G is fix(g) = {e}
the fixed points and kernel are both trivial:

Fix(φ) =
⋂
g∈G

fix(g) = {e}, and Ker(φ) =
⋂
s∈S

stab(s) = 〈e〉.

Cayley’s theorem
If |G | = n, then there is an embedding G ↪→ Sn.

Proof
Let G act on itself by right multiplication. This defines a homomorphism

φ : G −→ Perm(S) ∼= Sn.

Since Ker(φ) = 〈e〉, it is an embedding. �
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Groups acting on themselves by conjugation

Another way a group G can act on itself (that is, S = G) is by conjugation:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each x 7→ g−1xg.

The orbit of x ∈ G is its conjugacy class:

orb(x) =
{
x .φ(g) | g ∈ G

}
=
{
g−1xg | g ∈ G

}
= clG (x).

The stabilizer of x is its centralizer:

stab(x) =
{
g ∈ G | g−1xg = x

}
=
{
g ∈ G | xg = gx

}
:= CG (x)

The fixed point set of g ∈ G is also its centralizer, because

fix(g) =
{
x ∈ S | x.φ(g) = x

}
=
{
x ∈ G | g−1xg = x

}
= CG (g).

The fixed points and kernel are the center, because

Fix(φ) =
⋂
g∈G

fix(g) =
⋂
g∈G

CG (g) = Z(G) =
⋂
x∈G

CG (x) =
⋂
x∈G

stab(x) = Ker(φ).
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Groups acting on themselves by conjugation
Let’s apply our two theorems:

1. Orbit-stabilizer theorem. “the size of an orbit is the index of the stabilizer”:∣∣ clG (x)
∣∣ = [G : CG (x)] =

|G |
|CG (x)|

.

2. Orbit-counting theorem. “the number of orbits is the average number of elements
fixed by a group element”:

#conjugacy classes of G = average size of a centralizer.

Let’s revisit our old example of conjugacy classes in D6 = 〈r , f 〉:

1

r3

r

r5

r2

r4

f

rf

r2f

r3f

r4f

r5f

Notice that the stabilizers are stab(r) = stab(r2) = stab(r4) = stab(r5) = 〈r〉,

stab(1) = stab(r3) = D6, stab(r i f ) = 〈r3, r i f 〉.
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Groups acting on themselves by conjugation

Here is the “fixed point table”. Note that Ker(φ) = Fix(φ) = 〈r3〉.

1 r r2 r3 r4 r5 f rf r2f r3f r4f r5f

1 X X X X X X X X X X X X

r X X X X X X

r2 X X X X X X

r3 X X X X X X X X X X X X

r4 X X X X X X

r5 X X X X X X

f X X X X

rf X X X X

r2f X X X X

r3f X X X X

r4f X X X X

r5f X X X X

By the orbit-counting theorem, there are |Orb(φ)| = 72/|D6| = 6 conjugacy classes.
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Groups acting on subgroups by conjugation
Any group G acts on its set S of subgroups by conjugation:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each H to g−1Hg.

This is a right action, but there is an associated left action: H 7→ gHg−1.

Let H ≤ G be an element of S.

The orbit of H consists of all conjugate subgroups:

orb(H) =
{
g−1Hg | g ∈ G

}
= clG (H).

The stabilizer of H is the normalizer of H in G :

stab(H) =
{
g ∈ G | g−1Hg = H

}
= NG (H).

The fixed point set of g are the subgroups that g normalizes:

fix(H) =
{
H | g−1Hg = H

}
=
{
H | g ∈ NG (H)

}
,

The fixed points of φ are precisely the normal subgroups of G :

Fix(φ) =
{
H ≤ G | g−1Hg = H for all g ∈ G

}
.

The kernel of this action is the set of elements that normalize every subgroup:

Ker(φ) =
{
g ∈ G | g−1Hg = H for all H ≤ G

}
=
⋂
H≤G

NG (H).
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Groups acting on subgroups by conjugation

Let’s apply our two theorems:

1. Orbit-stabilizer theorem. “the size of an orbit is the index of the stabilizer”:∣∣ clG (H)
∣∣ = [G : NG (H)] =

|G |
|NG (H)|

.

2. Orbit-counting theorem. “the number of orbits is the average number of elements
fixed by a group element”:

#conjugacy classes of subgroups of G = average size of a normalizer.

G = NG (N)

N

n

normal∣∣ clG (N)
∣∣ = 1

G

NG (H)=H x2Hx−12 · · · xnHx−1n

n

fully unnormal∣∣ clG (H)
∣∣ = [G : H]; as large as possible

G

NG (K)

K x2Kx−12 · · ·xmKx−1m

n/m

m

moderately unnormal

1 <
∣∣ clG (K)

∣∣ < [G : K ]

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 32 / 91

mailto:macaule@clemson.edu


Groups acting on subgroups by conjugation
Here is an example of G = D3 acting on its subgroups.

τ(1) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

τ(r) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

τ(r2) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

τ(f ) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

τ(rf ) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

τ(r2f ) = 〈1〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉 D3

D3

〈r〉

〈1〉

〈f 〉 〈rf 〉 〈r2f 〉

Observations
Do you see how to read stabilizers and fixed points off of the permutation diagram?

Ker(φ) = 〈1〉 consists of the row(s) with only fixed points.

Fix(φ) =
{
〈1〉, 〈r〉,D3

}
consists of the column(s) with only fixed points.

By the orbit-counting theorem, there are |Orb(φ)| = 24/|D3| = 4 conjugacy classes.
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Groups acting on subgroups by conjugation
Here is an example of G = A4 = 〈(123), (12)(34)〉 acting on its subgroups.

A4

〈
(12)(34), (13)(24)

〉
〈

(234)
〉〈

(134)
〉〈

(124)
〉〈

(123)
〉

〈
(12)(34))

〉 〈
(13)(24)

〉 〈
(14)(23))

〉

{e}

Let’s take a moment to revisit our “three favorite examples” from Chapter 3.

N =
〈
(12)(34), (13)(24)

〉
, H =

〈
(123)

〉
, K =

〈
(12)(34)

〉
.
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Groups acting on subgroups by conjugation

Here is the “fixed point table” of the action of A4 on its subgroups.

〈e〉 〈(123)〉 〈(124)〉 〈(134)〉 〈(234)〉 〈(12)(34)〉 〈(13)(24)〉 〈(14)(23)〉 〈(12)(34), (13)(24)〉 A4

e X X X X X X X X X X

(123) X X X X

(132) X X X X

(124) X X X X

(142) X X X X

(134) X X X X

(143) X X X X

(234) X X X X

(243) X X X X

(12)(34) X X X X X X

(13)(24) X X X X X X

(14)(23) X X X X X X

By the orbit-counting theorem, there are |Orb(φ)| = 60/|A4| = 5 conjugacy classes.
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Groups acting on cosets of H by right-multiplication
Fix a subgroup H ≤ G . Then G acts on its right cosets by right-multiplication:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each Hx to Hxg.

Let Hx be an element of S = G/H (the right cosets of H).

There is only one orbit. For example, given two cosets Hx and Hy ,

φ(x−1y) sends Hx 7−→ Hx(x−1y) = Hy .

The stabilizer of Hx is the conjugate subgroup x−1Hx :

stab(Hx) =
{
g ∈ G | Hxg = Hx

}
=
{
g ∈ G | Hxgx−1 = H

}
= x−1Hx .

The doesn’t seem to be a standard term for the fixed point set of g:

fix(g) =
{
Hx | Hxg = Hx

}
=
{
Hx | xgx−1 ∈ H

}
.

Assuming H 6= G , there are no fixed points of φ.

The kernel of this action is the intersection of all conjugate subgroups of H:

Ker φ =
⋂
x∈G

stab(x) =
⋂
x∈G

x−1Hx .

Notice that 〈e〉 ≤ Ker φ ≤ H, and Ker φ = H iff H E G .
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Groups acting on cosets of H by right-multiplication

The quotient process is done by collapsing the Cayley diagram by the left cosets of H.

In contrast, this action is the result of collapsing the Cayley diagram by the right cosets.

1

rr2

r3

r4 r5

f

rfr2f

r3f

r4f r5f

H

rHr2H

r3H

r4H r5H

1

rr2

r3

r4 r5

f

frfr2

fr3

fr4 fr5
H

HrHr2

Hr3

Hr4 Hr5
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Subgroups of small index
Groups acting on cosets is a useful technique for establishing seemingly unrelated results.

Several of these involving showing that subgroups of “small index” are normal.

We’ve already seen that subgroups of index 2 are normal.

Of course, there are non-normal index-3 subgroups, like 〈f 〉 ≤ D3.

The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition
If G has no subgroup of index 2, then any subgroup of index 3 is normal.

Proof
Let H ≤ G with [G : H] = 3.

Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism

φ : G −→ S3.

K := Ker(φ) ≤ H is the largest normal subgroup of G contained in H. By the FHT,

G/K ∼= Im(φ) ≤ S3.
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Subgroups of small index

Proof (contin.)
Thus, there are three cases for this quotient:

G/K ∼= S3, G/K ∼= C3, G/K ∼= C2.

Visually, this means that we have one of the following:

G/K

N/K

K/K

A/K B/K C/K
3

3 3
3

2

2 2
2

G/K

K/K

3

G/K

K/K

2

By the corrdespondence theorem, K ≤ H � G implies K/K ≤ H/K � G/K .

Since G has no index-2 subgroup, only the middle case is possible (Why?).

This forces K/K = H/K , and so K = H which is normal for multiple reasons. �
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Subgroups of small index

Proposition
Suppose H ≤ G and [G : H] = p, the smallest prime dividing |G |. Then H E G .

Proof
Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

φ : G −→ Sp.

The kernel K = Ker(φ), is the largest normal subgroup of G such that K ≤ H � G .

We’ll show that H = K , or equivalently, that [H : K ] = 1. By the correspondence theorem:

G

H

K

p

q is not divisible by any prime < p

G/K ∼= Sp

H/K

K/K

p

q divides (p − 1)!

Do you see why q = 1? �

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 40 / 91

mailto:macaule@clemson.edu


Subgroups of small index
Recall that G is simple if its only normal subgroups are G and 〈e〉.

We just showed that if G is simple, then it cannot have a subgroup of index 2 or 3.

Proposition
If G is simple, then it cannot have a subgroup of index 4.

Proof
If H E G and [G : H] = 4, then G/H ∼= C4 or V4, so the subgroup lattice must be one of:

G/N

A/N B/N C/N

N/N

G/N

A/N

N/N

In either case, we would have [G : A] = 2 by the correspondence theorem.

This would give an index-2 subgroup AE G , so G cannot be simple. �
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A summary of our four actions

Thus far, we have seen four important (right) actions of a group G , acting:

on itself by right-multiplication

on itself by conjugation.

on its subgroups by conjugation.

on the right-cosets of a fixed subgroup H ≤ G by multiplication.

set S = G subgroups of G right cosets of H

operation multiplication conjugation conjugation right multiplication

orb(s) all of G clG (g) clG (H) all right cosets

stab(s) {e} CG (g) NG (H) x−1Hx

fix(g) {e} or ∅ CG (g) {H | g ∈ NG (H)}

Ker(φ) {e} Z(G)
⋂
H≤G

NG (H) largest norm. subgp. N ≤ H

Fix(φ) none Z(G) normal subgroups none
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Actions of automorphism groups

Let’s revist the idea of automorophisms, but this time in a group action framework.

For any G , the automorphism group Aut(G) naturally acts on S = G via a homomorphism

φ : Aut(G) −→ Perm(S), φ(σ) = the permutation that sends each g 7→ σ(g).

Let’s see an example. Any σ ∈ Aut(Q8) must send i to an element of order 4: ±i , ±j , ±k.

This leaves 4 choices for σ(j). Therefore, |Aut(Q8)| ≤ 24.

The inner automorphism group is Inn(Q8) =
{
Id, ϕi , ϕj , ϕk

}
.

Q8

〈i〉 〈j〉 〈j〉

〈−1〉

〈1〉

Inn(Q8) ∼= Q8/〈−1〉 ∼= V4

Z iZ jZ kZ

1

−1

i

−i

j

−j

k

−k

cosets of Z(Q8) are
in bijection with inner
automorphisms of Q8

cl(1)

cl(−1)

cl(i) cl(j) cl(k)

1

−1

i

−i

j

−j

k

−k

inner automorphisms of
Q8 permute elements

within conjugacy classes

All permutations of {i , j , k} define an outer automorphism, and so Out(Q8) ∼= S3.

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 43 / 91

mailto:macaule@clemson.edu


Automorphisms of Q8

All three groups Aut(Q8), Inn(Q8), and Out(Q8) ∼= Aut(Q8)/ Inn(Q8) act on S = Q8.

Inn(Q8) ∼= V4

1

−1

i

−i

j

−j

k

−k

Out(Q8) ∼= S3

1

−1

i

−i

j

−j

k

−k

Overlaying these two diagrams gives the action on S = Q8 by

Aut(Q8) ∼= Inn(Q8)oOut(Q8) ∼= V4 o S3 ∼= S4.

The group Aut(Q8) also acts on the conjugacy classes:

1 −1 ±i ±j ±k
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Action equivalence
Let’s recall the difference between left-conjugating and right conjugating:

H aHa−1 baHa−1b−1
conjugate

by a
conjugate

by b

conjugate by ba

φ(a)φ(b) = φ(ba)

“Left group action”

H a−1Ha b−1a−1Hab

conjugate
by a

conjugate
by b

conjugate by ab

φ(a)φ(b) = φ(ab)

“Right group action”

There’s a better way to describe left actions than the faux-homomorphic φ(a)φ(b) = φ(ba).

H aHa−1 baHa−1b−1
right-conjugate

by a−1
right-conjugate

by b−1

right-conj. by (a−1b−1)−1

φ(a−1)φ(b−1) = φ(a−1b−1) = φ((ba)−1)

“Left group action”

H a−1Ha b−1a−1Hab

right-conjugate
by a

right-conjugate
by b

right-conj. by ab

φ(a)φ(b) = φ(ab)

“Right group action”

Big idea
For every right action, there is an “equivalent” left-action where:

“pressing g-buttons, from L-to-R” ⇔ “pressing g−1-buttons, from R-to-L”.
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Action equivalence, informally

Action equivalence is more general. Consider two groups acting on sets, say via

φ1 : G1 −→ Perm(S1), and φ2 : G2 −→ Perm(S2).

If these are “equivalent”, then we’ll need

a set bijection σ : S1 −→ S2
a group isomorphism ι : G1 −→ G2.

s1

t1
g1 σ

s2 = σ(s1)

t2 = σ(t1)

g2 = ι(g1)

Informally, these actions are equivalent if:

1. pressing the g1-button in the G1-switchboard, followed by

2. applying σ : S1 → S2 to get to the other diagram

is the same as doing these steps in reverse order. That is,

1. applying σ : S1 → S2 to get to the other diagram, then

2. pressing the ι(g1)-button on the G2-switchboard.
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Action equivalence, formally

Definition
Two actions φ1 : G1 −→ Perm(S1) and φ2 : G2 −→ Perm(S2) are equivalent if there is an
isomorphism ι : G1 → G2 and a bijection σ : S1 → S2 such that

σ ◦ φ1(g) = φ2(ι(g)) ◦ σ, for all g ∈ G .

We say that the resulting action diagrams are action equivalent.

This can be expressed with a commutative diagram:

S1 S1

S2 S2

φ1(g)

σ σ

φ2(ι(g))

Action equivalence can be used to show that in our binary square example, we could have:

defined φ(r) to rotate clockwise, and φ(f ) to flip vertically

used tiles with a and b, rather than 0 and 1

read from right-to-left, rather than left-to-right, etc.
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Every right action has an equivalent left action

G acting on. . . right action equivalent left action

itself by multiplication x 7→ xg x 7→ g−1x

itself by conjugation x 7→ g−1xg x 7→ gxg−1

its subgroups by conjugation H 7→ g−1Hg H 7→ gHg−1

cosets by multiplication H 7→ Hg H 7→ g−1H

x xg

x−1 g−1x−1

φR (g)

σ σ

φL(g)

x xg

x−1 gx−1

φR (g)

σ not σ

θ(g)

x xg

x gx

φR (g)

Id not Id

θ(g)

x 7→ rx

x 7→ f x

f

rf

r2f

1

r2

r

θ

x 7→ xr

x 7→ xf

f

rf

r2f

1

r2

r

σId

action equivalencenot an equivalence
φR

x 7→ r−1x = r2x

x 7→ f−1x = fx

f

rf

r2f

1

r

r2

φL
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Every right action has an equivalent left action

G acting on. . . right action equivalent left action

itself by multiplication x 7→ xg x 7→ g−1x

itself by conjugation x 7→ g−1xg x 7→ gxg−1

its subgroups by conjugation H 7→ g−1Hg H 7→ gHg−1

cosets by multiplication H 7→ Hg H 7→ g−1H

Recall that aH = bH implies Ha−1 = Hb−1.

Hx Hxg

x−1H g−1x−1H

φR (g)

σ σ

φL(g)

Hx 7→ Hxr

Hx 7→ Hxf

H

HrHr2

Hr3

Hr4 Hr5

σ

xH 7→ r−1xH = r5xH

xH 7→ f−1xH = rxH

H

r5Hr4H

r3H

r2H rH

Since aH = bH 6⇒ Ha = Hb, the the map xH 7→ Hx is not even well-defined.

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 49 / 91

mailto:macaule@clemson.edu


Left and right actions of permutations

Recall the two “canonical” ways label a Cayley diagram for S3 = 〈(12), (23)〉 with the set

S = {123, 132, 213, 231, 312, 321}.

In one, (ij) can be interpreted to mean

“swap the numbers in the ith and jth coordinates.”

Alternatively, (ij) could mean

“swap the numbers i and j, regardless of where they are.”

e

(12)

(132)

(13)

(123)

(23)

S3 =
〈

(12), (23)
〉

right Cayley diagram

123

213

312

321

231

132

“swap numbers”

123

213

231

321

312

132

“swap coordinates”

One of these is a left group action, and the other a right group action.
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Left and right actions of permutations
Canonically associate elements of D3 with S3 via an isomorphism:

1
2 3

f =(23)

rf =(13)r2f =(12)

r =(123)

which acts on S =
{
123, 132, 213, 231, 312, 321

}

where

“pressing the r-button” cyclically shifts the entries to the right,

“pressing the f -button” transposes the last two entries (coordinates):

π(1)π(2)π(3)
φ(r)
7−→ π(3)π(1)π(2), π(1)π(2)π(3)

φ(f )
7−→ π(1)π(3)π(2).

This defines a right action, by the homomorphism

φR : S3 −→ Perm(S), φR(τ) : π(1)π(2)π(3) 7−→ π(τ(1))π(τ(2))π(τ(3)).

The equivalent left action permutes numbers, rather than entries

φL : S3 −→ Perm(S), φL(τ) : π(1)π(2)π(3) 7−→ τ−1(π(1))τ−1(π(2))τ−1(π(3)).
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Left and right actions of permutations

π(1) π(2) π(3)

right action “permutes positions”

π(1) π(2) π(3)

132

321

213

123

231

312

σ
φR

1 2 3

left action “permutes numbers”

1 2 3

132

321

213

123

312

231

φL

π(1)π(2)π(3) = 312 π(τ(1))π(τ(2))π(τ(3)) = 321

π−1(1)π−1(2)π−1(3) = 231 τ−1(π−1(1))τ−1(π−1(2))τ−1(π−1(3)) = 321

φR (τ)

σ σ

φL(τ)
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A creative application of a group action

Cauchy’s theorem
If p is a prime dividing |G |, then G has an element (and hence a subgroup) of order p.

Proof
Let P be the set of ordered p-tuples of elements from G whose product is e:

(x1, x2, . . . , xp) ∈ P iff x1x2 · · · xp = e .

Observe that |P| = |G |p−1. (We can choose x1, . . . , xp−1 freely; then xp is forced.)

The group Zp acts on P by cyclic shift:

φ : Zp −→ Perm(P), (x1, x2, . . . , xp)
φ(1)
7−→ (x2, x3 . . . , xp, x1) .

The set P is partitioned into orbits, each of size | orb(s)| = [Zp : stab(s)] = 1 or p.

The only way that the orbit of (x1, x2, . . . , xp) can have size 1 is if x1 = · · · = xp.

Clearly, (e, . . . , e) ∈ P is a fixed point.

The |G |p−1 − 1 other elements in P sit in orbits of size 1 or p.

Since p - |G |p−1 − 1, there must be other orbits of size 1. Thus, some (x , . . . , x) ∈ P, with
x 6= e satisfies xp = e. �
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Classification of groups of order 6

By Cauchy’s theorem, every group of order 6 must have:

an element a of order 3

an element b of order 2.

Clearly, G = 〈a, b〉, and so G must have the following “partial Cayley diagram”:

b

e

ba

a

ba2

a2

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

C6 ∼= C2 × C3

b

e

ba

a

ba2

a2

D3

b

e

ba

a

ba2

a2

Exercise. Classify groups of order 8 with a similar argument.
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p-groups and the Sylow theorems

Definition
A p-group is a group whose order is a power of a prime p. A p-group that is a subgroup of
a group G is a p-subgroup of G .

Notational convention
Throughout, G will be a group of order |G | = pn ·m, with p - m. That is, pn is the highest
power of p dividing |G |.

There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: Strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.

Recall that a p-group is any group of order pn. Examples, of 2-groups that we’ve seen
include C1, C4, V4, D4 and Q8, C8, C4 × C2, D8, SD8, Q16, SA8, Pauli1,. . .

p-group Lemma
If a p-group G acts on a set S via φ : G → Perm(S), then

|Fix(φ)| ≡p |S|.

Proof (sketch)

Suppose |G | = pn.

By the orbit-stabilizer theorem, the only
possible orbit sizes are 1, p, p2, . . . , pn.

Fix(φ) non-fixed points all in size-pk orbits

p elts

···
p3 elts

···
pi elts

p elts

··
·
p6 elts
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p-groups

Normalizer lemma, Part 1
If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Approach:

Let H (not G !) act on the (right) cosets of H by (right) multiplication.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

Cosets of H in NG (H) are the fixed points

S is the set of cosets of H in G

Apply our lemma: |Fix(φ)| ≡p |S|.
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p-groups

Normalizer lemma, Part 1
If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Proof
Let S = G/H = {Hx | x ∈ G}. The group H acts on S by right-multiplication, via
φ : H → Perm(S), where

φ(h) = the permutation sending each Hx to Hxh.

The fixed points of φ are the cosets Hx in the normalizer NG (H):

Hxh = Hx , ∀h ∈ H ⇐⇒ Hxhx−1 = H, ∀h ∈ H
⇐⇒ xhx−1 ∈ H, ∀h ∈ H
⇐⇒ x ∈ NG (H) .

Therefore, |Fix(φ)| = [NG (H) : H], and |S| = [G : H]. By our p-group Lemma,

|Fix(φ)| ≡p |S| =⇒ [NG (H) : H] ≡p [G : H] . �
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the proof of
the normalizer lemma.

NG (H)

S = G/H = set of right cosets of H in G

The fixed points are precisely
the cosets in NG (H)

Orbits of size > 1 are of various sizes
dividing |H|, but all lie outside NG (H)

H

Ha1

Ha2

Ha3

Hg1

Hg2Hg3

Hg7
Hg8

Hg9

Hg10

Hg11Hg12

Hg13

Hg14

Hg1

Hg4

Hg5Hg6
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p-subgroups
Recall that H ≤ NG (H) (always), and H is fully unnormal if H = NG (G).

Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

[NG (H) : H] > 1 cosets of H (a multiple of p)

[G : H] cosets of H (a multiple of p)

H is not “fully unnormal”:

H � NG (H) ≤ G

Important corollaries
p-groups cannot have any fully unnormal subgroups (i.e., H � NG (H)).

In any finite group, the only fully unnormal p-subgroups are maximal.
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Proof of the normalizer lemma

The normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

Proof
Since H E NG (H), we can create the quotient map

q : NG (H) −→ NG (H)/H , q : g 7−→ gH .

The size of the quotient group is [NG (H) : H], the number of cosets of H in NG (H).

By The normalizer lemma Part 1, [NG (H) : H] ≡p [G : H]. By Lagrange’s theorem,

[NG (H) : H] ≡p [G : H] =
|G |
|H|

=
pnm
pi

= pn−im ≡p 0 .

Therefore, [NG (H) : H] is a multiple of p, so NG (H) must be strictly larger than H. �
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The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question
What group structural properties are possible, what are impossible, and how does this
depend on |G |?

One approach is to decompose large groups into “building block subgroups.” For example:

given a group of order 72 = 23 · 32, what can we say about its 2-subgroups and
3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter
Sylow (1832–1918).

The Sylow theorems address the following questions of a finite group G :

1. How big are its p-subgroups?

2. How are the p-subgroups related?

3. How many p-subgroups are there?

4. Are any of them normal?
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An example: groups of order 12

The Sylow theorems can be used to classify
all groups of order 12.

We’ve already seen them all.

What patterns do you notice about the
2-groups and 3-groups, that might generalize
to all p-subgroups?

C12

C6

C4

C3

C2

C1

C6 × C2

C6C6C6

V4

C3

C2C2C2

C1

D6

D3 D3C6

V4 V4 V4

C3

C2C2C2C2C2C2C2

C1

Dic6

C6

C4 C4 C4

C3

C2

C1

A4

V4

C3C3C3C3

C2 C2 C2

C1
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The Sylow theorems

Notational convention
Througout, G will be a group of order |G | = pn ·m, with p - m.

That is, pn is the highest power of p dividing |G |.

A subgroup of order pn is called a Sylow p-subgroup.

Let Syl(G) denote the set of Sylow subgroups, and np :=
∣∣Syl(G)

∣∣.
There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist, and they’re “nested”.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on np, the number of Sylow p-subgroups.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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Our unknown group of order 12

Throughout, we will have a running example, a “mystery group” G of order 12 = 22 · 3.

We already know a little bit about G . By Cauchy’s theorem, it must have:

an element a of order 2, and

an element b of order 3.

|G |=12

e•

b
•

b2•

•
•

•
•

•

•

•

•

• a

G

C3

C2

〈e〉

···
···

Using only the fact that |G | = 12, we will unconver as much about its structure as we can.

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 65 / 91

mailto:macaule@clemson.edu


The 1st Sylow theorem: existence of p-subgroups

First Sylow theorem

G has a subgroup of order pk , for each pk dividing |G |.

Also, every non-Sylow p-subgroup sits inside a larger p-subgroup.

Proof

The trivial subgroup {e} has order p0 = 1.

Big idea: Given a subgroup H < G of order pi < pn, we’ll construct H ′ of order pi+1.

By the normalizer lemma, the order of the quotient NG (H)/H is a multiple of p.

By Cauchy’s theorem, NG (H)/H has an element aH of order p. Therefore, 〈aH〉 ∼= Cp.

Key idea: The group H ′ we seek consists of the elements in these p cosets (“shoeboxes”).

Formally, this is the preimage of 〈aH〉 under the quotient q : NG (H)→ NG (H)/H.

Specifically, q−1(H), q−1(aH), q−1(a2H), . . . , q−1(ap−1H) are distinct cosets of H in
NG (H), each of size pi .

Thus, the preimage H ′ = q−1(〈aH〉) contains p · |H| = pi+1 elements. �

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 66 / 91

mailto:macaule@clemson.edu


The 1st Sylow theorem: existence of p-subgroups

Here is a picture of how we found the group H ′ = q−1(〈aH〉).

NG (H)

g1H

g2H

g3H

g4H

· ·
·

H

aH

a2Ha3H

•

•

•

q

H ′

NG (H)

H

• g1

• g2

• g3

• g4

· ·
·

•

H
•aH

•
a2H

•
a3H

··
·

〈aH〉

q−1

Since |H| = pi , the subgroup H ′ =

p−1⋃
k=0

akH contains p · |H| = pi+1 elements.
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Our unknown group of order 12

By the first Sylow theorem, 〈a〉 is contained in a subgroup of order 4, which could be V4 or
C4, or possibly both.

|G |=12

e•

b
•

b2

•

•
•

•
•

•

•

•

•

• a

G

C4

C3

C2

〈e〉

···

G

V4

C3

C2 C2 C2

〈e〉

···
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The 2nd Sylow theorem: relationship among p-subgroups

Second Sylow theorem
Any two Sylow p-subgroups are conjugate (and hence isomorphic).

We’ll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem
Let H ∈ Syl(G), and K ≤ G any p-subgroup. Then K is conjugate to a subgroup of H.

G

H H ′

g−1Kg K

Cp Cp

〈e〉

···
···

φ(g)

Order: pnm

pn

pi

p

1
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The 2nd Sylow theorem: All Sylow p-subgroups are conjugate

Strong second Sylow theorem
Let H be a Sylow p-subgroup, and K ≤ G any p-subgroup. Then K is conjugate to some
subgroup of H.

Proof
Let S = G/H = {Hg | g ∈ G}, the set of right cosets of H.

The group K acts on S by right-multiplication, via φ : K → Perm(S), where

φ(k) = the permutation sending each Hg to Hgk.

A fixed point of φ is a coset Hg ∈ S such that

Hgk = Hg , ∀k ∈ K ⇐⇒ Hgkg−1 = H , ∀k ∈ K

⇐⇒ gkg−1 ∈ H , ∀k ∈ K

⇐⇒ gKg−1 ⊆ H.

Thus, if we can show that φ has a fixed point Hg, we’re done!

All we need to do is show that |Fix(φ)| 6≡p 0. By the p-group Lemma,

|Fix(φ)| ≡p |S| = [G : H] = m 6≡p 0. �
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Our unknown group of order 12

By the second Sylow theorem, all Sylow p-subgroups are conjugate, and hence isomorphic.

This eliminates the following subgroup lattice of a group of order 12.

|G |=12

e•

b
•

b2

•

•
•

•
•

•

•

•

•

• a

G

C4 V4

C3 C3

C2 C2 C2

〈e〉

···
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Application: A5 has no nontrival proper normal subgroups
A5

A4A4A4A4A4

D5D5D5D5D5D5

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

C5C5C5C5C5C5
V4V4V4V4V4

C3C3C3C3C3C3C3C3C3C3

C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

〈e〉

3

5

2

2

5
6

10

5

4

3

2

3
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The normalizer of the normalizer
Notice how in A5:

all Sylow p-subgroups are moderately unnormal

the normalizer of each Sylow p-subgroup is fully unnormal. That is:

NG (NG (P)) = NG (P)

Proposition
Let P be a non-normal Sylow p-subgroup of G . Then its normalizer is fully unnormal.

Proof
We’ll verify the equivalent statement of NG (NG (P)) = NG (P).

Note that P is a normal Sylow p-subgroup of NG (P).

By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of NG (P).

Take an element x that normalizes NG (P) (i.e., x ∈ NG (NG (P)). We’ll show that it also
normalizes P. By definition, xNG (P)x−1 = NG (P), and so

P ≤ NG (P) =⇒ xPx−1 ≤ xNG (P)x−1 = NG (P).

But xPx−1 is also a Sylow p-subgroup of NG (P), and by uniqueness, xPx−1 = P. �
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The 3rd Sylow theorem: number of p-subgroups

Third Sylow theorem
Let np be the number of Sylow p-subgroups of G . Then

np divides |G | and np ≡p 1 .

(Note that together, these imply that np | m, where |G | = pn ·m.)

Proof
The group G acts on S = Sylp(G) by conjugation, via φ : G → Perm(S), where

φ(g) = the permutation sending each H to g−1Hg.

By the second Sylow theorem, all Sylow p-subgroups are conjugate!

Thus there is only one orbit, orb(H), of size np = |S|.

By the orbit-stabilizer theorem,

| orb(H)|︸ ︷︷ ︸
=np

·| stab(H)| = |G | =⇒ np divides |G | .
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The 3rd Sylow theorem: number of p-subgroups

Proof (cont.)

Now, pick any H ∈ Sylp(G) = S. The group H acts on S by conjugation, via
θ : H → Perm(S), where

θ(h) = the permutation sending each K to h−1Kh.

Let K ∈ Fix(θ). Then K ≤ G is a Sylow p-subgroup satisfying

h−1Kh = K , ∀h ∈ H ⇐⇒ H ≤ NG (K) ≤ G .

We know that:

H and K are Sylow p-subgroups of G , but also of NG (K).

Thus, H and K are conjugate in NG (K). (2nd Sylow Thm.)

K E NG (K), thus the only conjugate of K in NG (K) is itself.

Thus, K = H. That is, Fix(θ) = {H} contains only 1 element.

By the p-group Lemma, np := |S| ≡p |Fix(θ)| = 1. �
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Summary of the proofs of the Sylow theorems

For the 1st Sylow theorem, we started with H = {e}, and inductively created larger
subgroups of size p, p2, . . . , pn.

For the 2nd and 3rd Sylow theorems, we used a clever group action and then applied one or
both of the following:

(i) orbit-stabilizer theorem. If G acts on S, then | orb(s)|·| stab(s)| = |G |.

(ii) p-group lemma. If a p-group acts on S, then |S| ≡p |Fix(φ)|.

To summarize, we used:

S2 The action of K ∈ Sylp(G) on S = G/H by right multiplication for some other
H ∈ Sylp(G).

S3a The action of G on S = Sylp(G), by conjugation.

S3b The action of H ∈ Sylp(G) on S = Sylp(G), by conjugation.

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 76 / 91

mailto:macaule@clemson.edu


Our mystery group order 12
By the 3rd Sylow theorem, every group G of order 12 = 22 · 3 must have:

n3 Sylow 3-subgroups, each of order 3.

n3 | 4, n3 ≡ 1 (mod 3) =⇒ n3 = 1 or 4.

n2 Sylow 2-subgroups of order 22 = 4.

n2 | 3, n2 ≡ 1 (mod 2) =⇒ n2 = 1 or 3.

But both are not possible! (There aren’t enough elements.)

|G |=12

e•

b
•

b2
•

•
•

•
•

•

•

•

•

• a

n3 =4

⇒ n2 =1

|G |=12

e•

b
•

b2
•

•
•

•
•

•

•

•

•

• a

n2 =3

⇒ n4 =1

G

C4 C4 C4

C3 C3 C3 C3

9 elts. here

8 elts.
here

C2

〈e〉

···

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 77 / 91

mailto:macaule@clemson.edu


The five groups of order 12

With a litte work and the Sylow theorems, we
can classify all groups of order 12.

We’ve already seen them all. Here are their
subgroup lattices.

Note that all of these decompose as a direct
or semidirect product of Sylow subgroups.

C12

C6

C4

C3

C2

C1

C6 × C2

C6C6C6

V4

C3

C2C2C2

C1

D6

D3 D3C6

V4 V4 V4

C3

C2C2C2C2C2C2C2

C1

Dic6

C6

C4 C4 C4

C3

C2

C1

A4

V4

C3C3C3C3

C2 C2 C2

C1
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Simple groups and the Sylow theorems

Definition
A group G is simple if its only normal subgroups are G and 〈e〉.

Simple groups are to groups what primes are to integers, and are essential to understand.

The Sylow theorems are very useful for establishing statements like:

There are no simple groups of order k (for some k).

Since all Sylow p-subgroups are conjugate, the following result is immediate.

Remark
A Sylow p-subgroup is normal in G iff it’s the unique Sylow p-subgroup (that is, if np = 1).

Thus, if we can show that np = 1 for some p dividing |G |, then G cannot be simple.

For some |G |, this is harder than for others, and sometimes it’s not possible.

Tip
When trying to show that np = 1, it’s usually helpful to analyze the largest primes first.
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An easy example

We’ll see three examples of showing that groups of a certain size cannot be simple, in
successive order of difficulty.

Proposition
There are no simple groups of order 84.

Proof

Since |G | = 84 = 22 · 3 · 7, the third Sylow theorem tells us:

n7 divides 22 · 3 = 12 (so n7 ∈ {1, 2, 3, 4, 6, 12})
n7 ≡7 1.

The only possibility is that n7 = 1, so the Sylow 7-subgroup must be normal. �

Observe why it is beneficial to use the largest prime first:

n3 divides 22 · 7 = 28 and n3 ≡3 1. Thus n3 ∈ {1, 2, 4, 7, 14, 28}.

n2 divides 3 · 7 = 21 and n2 ≡2 1. Thus n2 ∈ {1, 3, 7, 21}.
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A harder example

Proposition
There are no simple groups of order 351.

Proof

Since |G | = 351 = 33 · 13, the third Sylow theorem tells us:

n13 divides 33 = 27 (so n13 ∈ {1, 3, 9, 27})
n13 ≡13 1.

The only possibilies are n13 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order 33 = 27.
Therefore, P ∩Q = {e}.

Suppose n13 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and so G
must contain 27 · 12 = 324 elements of order 13.

This leaves 351− 324 = 27 elements in G not of order 13. Thus, G contains only one
Sylow 3-subgroup (i.e., n3 = 1) and so G cannot be simple. �
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The hardest example

Proposition

There are no simple groups of order 24 = 23 · 3.

From the 3rd Sylow theorem, we can only conclude that n2 ∈ {1, 3} and n3 = {1, 4}.

Let H be a Sylow 2-subgroup, which has relatively “small” index: [G : H] = 3.

Lemma
If G has a subgroup of index [G : H] = n, and |G | does not divide n!, then G is not simple.

Proof
Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

φ : G −→ Perm(S) ∼= Sn , φ(g) = the permutation that sends each Hx to Hxg.

Recall that Ker(φ)E G , and is the intersection of all conjugate subgroups of H:

〈e〉 ≤ Ker φ =
⋂
x∈G

x−1Hx � G

If Ker φ = 〈e〉 then φ : G ↪→ Sn is an embedding, which is impossible because |G | - n!. �
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Conjugacy classes in An

Elements in Sn are conjugate iff they have the same cycle type.

However, 8 of the 12 elements in A4 are 3-cycles. These cannot all be conjugate.

Take σ ∈ An, and consider its conjugacy class in Sn. By the orbit-stabilizer theorem,

| clSn (σ)| = [Sn : CSn (σ)] =
n!

|Csn (σ)|
.

There are two cases: (1) CSn ≤ An, or (2) CSn � An.

Case 1. CAn (σ) = CSn (σ), and by the orbit-stabilizer theorem,

| clAn (σ)| = [An : CAn (σ)] =
n!/2
|CAn (σ)|

=
n!

2|CSn (σ)|
=

1
2

∣∣ clSn (σ)
∣∣.

Conclusion: the conjugacy class splits into two.

Case 2. By the diamond theorem, exactly half of the permutations in CSn (σ) are even, so

| clAn (σ)| = [An : CAn (σ)] = [An : CSn (σ) ∩ An] =
n!/2

|CSn (σ)|/2
=
∣∣ clSn (σ)

∣∣.
Conclusion: the conjugacy class is preserved upon restricting to An.
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Simplicity of A5

For example, S5 has 7 conjugacy classes: clS5 (e) = {e}, and

clS5 ((12)), clS5 ((123)), clS5 ((1234)), clS5 ((12345)), clS5 ((12)(34)), clS5 ((12)(345)).

To find the conjugacy classes of A5, first disregard the odd permutations. Note that:

CS5 (e) = S5
CS5 ((12)) and CS5 ((123)) both contain (34) 6∈ A5

CS5 ((12345)) ≤ A5

Therefore, the size-24 conjugacy class containing (12345) splits in A5.∣∣ clS5 ((123))
∣∣ = 20,

∣∣ clS5 ((12345))
∣∣ = 12,

∣∣ clS5 ((13524))
∣∣ = 12,

∣∣ clS5 ((12)(34))
∣∣ = 15.

Proposition
The alternating group A5 is simple.

Proof
Any normal subgroup of A5 must have order 2, 3, 4, 5, 6, 12, 15, 20, or 30.

It’s also the union of conjugacy classes: {e} and others of sizes 12, 12, 15, and 20.

Other than A5 and 〈e〉, this is impossible.
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A generating set for An

Lemma
For n ≥ 3, the alternating group An is generated by 3-cycles.

Proof
By definition, An is generated by all products of pairs of transpositions.

Type 1. Disjoint transpositions:

(ab)(cd) = (acd)(acb).

Type 2. Overlapping transpositions:

(ab)(bc) = (acb).

We know that A3 = 〈(123)〉 and A4 = 〈(123), (234)〉, so let n ≥ 5.

Claim. All 3-cycles are conjugate to (123) in An.

Take any 3-cycle (abc), and write

(abc) = σ(123)σ−1, σ ∈ Sn.

If σ ∈ An, we’re done. Otherwise, conjugating by σ · (45) ∈ An gives the same result. �
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Simplicity of An

Theorem
The alternating group A5 is simple, for all n ≥ 5.

Proof
Consider a nontrivial proper normal subgroup N E G .

All we have to do is show that N contains a 3-cycle. (Why?)

Pick any nontrivial σ ∈ N, and write it as a product of disjoint cycles.

There are several cases to consider separately. We’ll either

(i) construct a 3-cycle from σ, or

(ii) construct an element in a previous case.

Case 1. σ contains a k-cycle (a1a2 · · · ak ) for k ≥ 4.

Then N contains a 3-cycle:

(a1a2a3)σ(a1a2a3)−1︸ ︷︷ ︸
∈N

·σ−1 = (a1a2a3)(a1a2 · · · ak )(a3a2a1)(ak · · · a2a1) = (a2a3ak ) ∈ N. X

In the remaining cases, we can assume that σ is a product of 3-cycles.
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Simplicity of An

Theorem
The alternating group A5 is simple, for all n ≥ 5.

Proof (contin.)

Case 2. σ has at least two 3-cycles; σ = (a1a2a3)(a4a5a6) · · · .

If we conjugate σ by (a1a2a4), we can also ignore the other (commuting) cycles in σ.

(a1a2a4)σ(a1a2a4)−1︸ ︷︷ ︸
∈N

·σ−1 = (a1a2a4)[(a1a2a3)(a4a5a6) · · · ](a4a2a1)[· · · (a6a5a4)(a3a2a1)]

= (a1a2a4a3a6) ∈ N.

We are now back in Case 1. X

Case 3. σ has only one 3-cycle; σ = (a1a2a3)(a4a5)(a6a7) · · · · · · .

Then σ2 = (a1a3a2) ∈ N, and so σ ∈ N. X

We’ve exhausted the cases where σ contains a 3-cycle.

In the remaining cases, we can assume that σ is a product of pairs of 2-cycles.
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Simplicity of An

Theorem
The alternating group A5 is simple, for all n ≥ 5.

Proof (contin.)

Case 4. σ is a product of 2-cycles; σ = (a1a2)(a3a4) · · · .

If we conjugate σ by (a1a2a3), we can ignore the other (commuting) 2-cycles in σ.

(a1a2a3)σ(a1a2a3)−1︸ ︷︷ ︸
∈N

·σ−1 = (a1a2a3)(a1a2)(a3a4)(a3a2a1)(a1a2)(a3a4)

= (a1a4)(a2a3) ∈ N.

Now, letting π = (a1a4a5),

(a1a4)(a2a3)π[(a1a4)(a2a3)]−1︸ ︷︷ ︸
∈N

·π−1 = (a1a4)(a2a3)(a1a4a5)(a1a4)(a2a3)(a5a4a1)

= (a1a4a5) ∈ N. X

and this completes the proof. �
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Classification of finite simple groups

Theorem (2004)
Every finite simple group is isomorphic to one of the following groups:

A cyclic group Zp, with p prime;

An alternating group An, with n ≥ 5;

A Lie-type Chevalley group: PSL(n, q), PSU(n, q), PsP(2n, p), and PΩε(n, q);

A Lie-type group (twisted Chevalley group or the Tits group): D4(q), E6(q), E7(q),
E8(q), F4(q), 2F4(2n)′, G2(q), 2G2(3n), 2B(2n);

One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

“baby monster group” B, which has order

|B| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 ≈ 4.15× 1033;

“monster group” M, which has order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8.08× 1053.

The proof of this classification theorem is spread across ≈15,000 pages in ≈500 journal
articles by over 100 authors, published between 1955 and 2004.
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The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

An
1 2 3 n

Bn
1 2 3 n

〈

Cn
1 2 3 n

〉

Dn
3 4 n

1

2

E6,7,8
1 2 3 5 6 7 8
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F4
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〉

G2
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Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group∗

Sporadic Groups
Cyclic Groups

Symbol

Order‡

Alternates†

∗The Tits group F2
4(2)′ is not a group of Lie type,

but is the (index 2) commutator subgroup of F2
4(2).

It is usually given honorary Lie type status.

†For sporadic groups and families, alternate names
in the upper left are other names by which they
may be known. For specific non-sporadic groups
these are used to indicate isomorphims. All such
isomorphisms appear on the table except the fam-
ily Bn(2m) ∼= Cn(2m).

‡Finite simple groups are determined by their order
with the following exceptions:

Bn(q) and Cn(q) for q odd, n > 2;
A8

∼= A3(2) and A2(4) of order 20160.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.

Copyright c© 2012 Ivan Andrus.
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