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Overview

Intuitively, a group action occurs when a group G “naturally permutes” a set S of states.
For example:

m The “Rubik’s cube group” consists of the 4.3 x 1019 actions that permutate the
4.3 x 1019 configurations of the cube.

m The group Dy consists of the 8 symmetries of the square. These symmetries are
actions that permute the 8 configurations of the square.

Group actions help us understand the interplay between the actual group of actions and
sets of objects that they “rearrange.”

There are many other examples of groups that “act on” sets of objects. We will see
examples when the group and the set have different sizes.

The rich theory of group actions can be used to prove many deep results in group theory.
We have actually already seen many group actions, without knowing it, such as:

B groups acting on themselves by multiplication
m groups acting on themselves by conjugation
m groups acting on their subgroup by conjugation

m groups acting on cosets by multiplication.
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Actions vs. configurations

The group D4 can be thought of as the 8 symmetries of the square:

There is a subtle but important distinction to make, between the actual 8 symmetries of
the square, and the 8 configurations.

For example, the 8 symmetries (alternatively, “actions”) can be thought of as
1, r, 2, 3, f, rf, r2f, r3f.

The 8 configurations (or states) of the square are the following:

When we were just learning about groups, we made an action diagram.

m The vertices corresponded to the states.

m The edges corresponded to generators.

m The paths corresponded to actions (group elements).

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 3/91


mailto:macaule@clemson.edu

Action diagrams

Here is the action diagram of the group Dy = (r, f):

2 4
34 2.3
2 4
43 32
23 34
4 2
32 43
4 2

In the beginning of this course, we picked a configuration to be the “solved state,” and this
gave us a bijection between configurations and actions (group elements).

The resulting diagram was a Cayley diagram. In this section, we'll skip this step.
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Actions diagrams

In all of the examples we saw in the beginning of the course, we had a bijective
correspondence between actions and states. This need not always happen!

Suppose we have a size-7 set consisting of the following "binary squares.”

- D AN 2EE D

The group D4 = (r, f) “acts on S" as follows:

3o

[N}
o o

o o
o o

o

The action diagram above has some properties of Cayley diagrams, but there are some
fundamental differences as well.
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The “group switchboard” analogy

Suppose we have a “switchboard” for G, with every element g € G having a "button.”

If a € G, then pressing the a-button rearranges the objects in our set S. In fact, it is a
permutation of S; call it ¢(a).

If b € G, then pressing the b-button rearranges the objects in S a different way. Call this
permutation ¢(b).

The element ab € G also has a button. We require that pressing the ab-button yields the
same result as pressing the a-button, followed by the b-button. That is,

¢(ab) = ¢p(a)p(b), foralla,be G.
Let Perm(S) be the group of permutations of S. Thus, if |S| = n, then Perm(S) £ S,,.
(We typically think of S, as the permutations of {1,2,...,n}.)

Definition

A group G acts on a set S if there is a homomorphism ¢: G — Perm(S).
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The “group switchboard” analogy

In our binary square example, pressing the r-button and f-button permutes S as follows:
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Left actions vs. right actions (an annoyance we can deal with)

As we've defined group actions, “pressing the a-button followed by the b-button should be
the same as pressing the ab-button.”

However, sometimes it has to be the same as “pressing the ba-button.”

This is best seen by an example. Suppose our action is conjugation:

“Left group action” "Right group action”
conjugate conjugate conjugate conjugate
by by b by by b
H > aHa ! —— baHa'b'  H————> 37 Ha —— b-la~1Hab
W W
¢(a)¢(b) = o(ba) ¢(a)¢(b) = d(ab)

We'll call aHa™! the left conjugate of H by a, and a~!Ha the right conjugate.

Some books forgo our “¢-notation” and use the following notation to distinguish left vs.
right group actions:

g.(h.s) = (gh).s, (s.g).h =s.(gh).

We'll usually keep the ¢, and write ¢(g)p(h)s = ¢(gh)s and s.¢(g)p(h) = s.¢(gh). As with
groups, the "dot” will be optional.
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Left actions vs. right actions (an annoyance we can deal with)

Alternative definition (other textbooks)
A right group action is a mapping
GxS—S, (a,s)—>s.a

such that
m s.(ab) = (s.a).b, foralla,be GandseS
mse=s, forallsesS.

A left group action can be defined similarly.
Pretty much all theorems for left actions hold for right actions.

Generally, each left action has a related right action. We will use right actions, and write

s.#(9)

for “the element of S that the permutation ¢(g) sends s to,” i.e., where pressing the
g-button sends s.

If we have a left action, we'll write ¢(g).s.
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Cayley diagrams as action diagrams

Every Cayley diagram is the action diagram of a particular (right) group action.
For example, consider the group G = D4 = (r, ) acting on itself. That is,
S =D = {1, ror?rd f,rf,rzf,r3f}.

Suppose that pressing the g-button on our “group switchboard” multiplies every element on
the right by g.

Here is the action diagram:

We say that “G acts on itself by right-multiplication.”
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Five features of every group action

Every group action has five fundamental features that we will always try to understand.

There are several ways to classify them. For example:
m three are subsets of S

m two are subgroups of G.

Another way to classify them is by local vs. global:
m three are features of individual group or set elements (we'll write in lowercase)

m two are features of the homomorphism ¢. (we'll write in Uppercase)

We will see parallels within and between these classes.
For example, two “local” features will be “dual” to each other, as will the global features.

Also, our global features can be expressed as intersections of our local features, either
ranging over all s € S, or over all g € G.

We'll start by exploring the three local features.
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Two local features: orbits and stabilizers

Suppose G acts on set S, and pick some s € S. We can ask two questions about it:
(i) What other states (in S) are reachable from s? (We call this the orbit of s.)

(if) What group elements (in G) fix s? (We call this the stabilizer of s.)

Definition
Suppose that G acts on a set S (on the right) via ¢: G — Perm(S).
(i) The orbit of s € S is the set
orb(s) = {s.¢(g9) | g € G}.

(if) The stabilizer of s in G is

stab(s) = {g € G | s.¢(g) = s}.

In terms of the action diagram
(i) The orbit of s € S is the connected component containing s.

(ii) The stabilizer of s € S are the group elements whose paths start and end at s;
*loops.”
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The third local feature: fixed point sets
Our first two local features were specific to a certain element s € S.

Our last local feature is defined for each group element g € G. A natural question to ask is:
(iii) What states (in S) does g fix?

Definition

Suppose that G acts on a set S (on the right) via ¢: G — Perm(S).

(iii) The fixed point set of g € G are the elements s € S fixed by g:

fix(g) = {s € S| s.4(g) = s}

In terms of the action diagram
(iii) The fixed point set of g € S are the nodes from which the g-paths are loops.

In terms of the “group switchboard analogy”

(i) The orbit of s € S are the elements in S the can be obtained by pressing some
combination of buttons.

(if) The stabilizer of s € S consists of the buttons that have no effect on s.

(iii) The fixed point set of g € G are the elements in S that don't move when we press
the g-button.

4
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Three local features: orbits, stabilizers, and fixed point sets
The orbits of our running example are the 3 connected components.
¥ o
00

g m o
E [0 0]
The stabilizers are:

stab():D4, stab(): stab() stab(): stab() =(f)
= {12 r2f} stab() = stab(): (r?f)

The fixed point sets are fix(1) = S, and

fix(r):fix(r3):{} fix(rz):fix(rf):fix(r3f)= { ' ’ }
w(n={[55| Eal B} w2 ={[ 5| BH Eel}
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Local duality: stabilizers vs. fixed point sets

Consider the following table, where a checkmark at (g, s) means g fixes s.

H.H
1 v v v v v v v
r v
r? v v v
r3 v
f v v v
rf v v v
r2f v v v
r3f v v v

m the stablizers can be read off the columns: group elements that fixs € S

m the fixed point sets can be read off the rows: set elements fixed by g € G.
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The stabilizer subgroup
Notice how in our example, the stabilizer of each s € S was a subgroup.
This holds true for any action.

Proposition
For any s € S, the set stab(s) is a subgroup of G.

Proof (outline)
To show stab(s) is a group, we need to show three things:
(i) Identity. That is, s.¢(e) = s.
(ii) Inverses. That is, if s.¢(g) = s, then s.¢(g7 1) = s.
(iii) Closure. That is, if s.¢(g) = s and s.¢(h) = s, then s.¢(gh) = s.
Alternatively, it suffices to show that if s.¢(g) = s and s.¢(h) = s, then s.¢(gh™!) = s,

You'll do this on the homework.

All three of these are very intuitive in our our switchboard analogy.
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The stabilizer subgroup

As we've seen, elements in the same orbit can have different stabilizers.

Proposition (HW exercise)

Set elements in the same orbit have conjugate stabilizers:

stab(s.¢(g)) = g *stab(s)g, forallge GandseS.

In other words, if x stabilizes s, then g~1xg stabilizes s.¢(g).

Here are several ways to visualize what this means and why.

o(f) X

(=)
=Xe)
(=X=)
oo

B(x) s 0 0

S
4»({ #(9) #(r) #(r)

o d(g~1x9) o o) G(r=tfr) = ¢(r'f) 0 @
0,0 0 0 0

In other words, if x is a loop from s, and s SN s, then g~ !xg is a loop from s’.
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Two global features: fixed points and the kernel

Our last two features are properties of the action ¢, rather than of specific elements.
The first definition is new, and the second is an familiar concept in this new setting.
Definition

Suppose that G acts on a set S via ¢: G — Perm(S).

(iv) The kernel of the action is the set

Ker(¢) = {k € G| (k) =e} ={k € G|s.¢(k) =s forall s € S}.

(v) The fixed points of the action, denoted Fix(¢), are the orbits of size 1:

Fix(¢) = {s€ S |s.¢(g) =s forallge G}.

Proposition (global duality: fixed points vs. kernel)
Suppose that G acts on a set S via ¢: G — Perm(S). Then

Ker(¢) = ) stab(s), and  Fix(¢) = () fix(9).

seS geG

Let’s also write Orb(¢) for the set of orbits of ¢.
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Two global features: fixed points and the kernel

[eoNe]
Sl

In terms of the action diagram
(iv) The kernel of ¢ are the paths that are “loops from every s € S.”

(v) The fixed points of ¢ are the size-1 connected components.

In terms of the group switchboard analogy

(iv) The kernel of ¢ are the “broken buttons”; those g € G that have no effect on any s.

(v) The fixed points of ¢ are those s € S that are not moved by pressing any button.
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Global duality: fixed points vs. kernel

Consider the following table, where a checkmark at (g, s) means g fixes s.

H
1 v v v v v v v
r v
r? v v v
r3 v
f v v v
rf v v v
r2f v v v
r3f v v v

m the fixed point set consist of columns with all checkmarks: set elts fixed by everything

m the kernel consists of the rows with all checkmarks: group elements that fix everything.
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Two theorems on orbits, and their consequences

Our binary square example gives us some key intutition about group actions.

Qualitative observations
m elements in larger orbits tend to have smaller stabilizers, and vice-versa

m action tables with more “checkmarks” tend to have more orbits

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems
1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.

2. Orbit-counting theorem: the number of orbits is the average number of things fixed by
a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:
m The size of the conjugacy class clg(H) is the index of the normalizer of H < G

m The size of the conjugacy class clg(x) is the index of the centralizer of x € G

We can also determine the number of conjugacy classes from the orbit-counting theorem.
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Our first theorem on orbits

Orbit-stabilizer theorem
For any group action ¢: G — Perm(S), and any s € S,

|orb(s)| - | stab(s)| = |G| .

Equivalently, the size of an orbit is |orb(s)| = [G : stab(s)].

Proof

Goal: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).

That is, “two g-buttons send s to the same place iff they're in the same coset'.

G = D4 and H = (f) o ~E

Let s = 1 Pl 2l @

stab(s) = (f). | fr|f?| E

H  Hr Hr? Hr

Note that s.¢(g) = s.¢(k) iff g and k are in the same right coset of H in G.

y
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The orbit-stabilizer theorem: |orb(s)| - | stab(s)| = |G|

Proof (cont.)
Throughout, let H = stab(s).
"=" If two elements send s to the same place, then they are in the same coset.

Suppose g, k € G both send s to the same element of S. This means:

s.¢(9) = s.¢(k) s.p(9)p(k) "t =5

s-p(g)p(k ') =s

s.p(gk™1) =s (i.e., gk—! stabilizes s)
gk~leH (recall that H = stab(s))
Hgk~Y = H

Hg = Hk

IR

"<" If two elements are in the same coset, then they send s to the same place.
Take two elements g, k € G in the same right coset of H. This means Hg = Hk.

This is the last line of the proof of the forward direction, above. We can change each =—>
into <=, and thus conclude that s.¢(g) = s.¢(k). O

v

If we have instead, a left group action, the proof carries through but using left cosets.
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Our second theorem on orbits

Orbit-counting theorem
Let a finite group G act on a set S via ¢: G — Perm(S). Then

1 .
|0rb(9)| = g7 3 Ix(9)]

geG

This says that the "average number of checkmarks per row" is the number of orbits:

1 v v v v v v v
r v

r? v v v

r3 v

f v v v
rf v v v

r’f v v v

r3f v v v
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Orbit-counting theorem: | Orb(¢) |G| Z | fix(g
geG

Proof

Let’s first count the number of checkmarks in the action table, three ways:

S Ifix(a)l = [{(9.5) € G x S| s.(g) = s}| = 3 Istab(s)| .

gei seS
N e N e’
count by rows count by columns

By the orbit-stabilizer theorem, we can replace each |stab(s)| with |G|/| orb(s)|:

_— 6]
Z|stab s)| = Z |orb(s)| |Z |orb s)|

seS seS

Let’'s express this sum over all disjoint orbits S = O; U - - - U Oy separately:

lzlob(s)\ > (Z|Orbs)|):|Gl > 1=1G|-|Orb(¢)|.
N———

OeOrb(¢) s€O O€Orb(¢)
=1 (why?)
Equating this last term with the first term gives the desired result. O
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Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or
cosets of some fixed H < G.

Often, the orbits, stabilizers, and fixed points of these actions are familiar algebraic objects.
A number of deep theorems have a slick proof via a clever group action.

Here are common examples of group actions:
m G acts on itself by right-multiplication (or left-multiplication).
m G acts on itself by conjugation.
m G acts on its subgroups by conjugation.
m G acts on the right-cosets of a fixed subgroup H < G by right-multiplication.

For each of these, we'll characterize the orbits, stabilizers, fixed point sets, fixed points,

and kernel.
We'll encounter familiar objects such as conjugacy classes, normalizers, stabilziers, and

normal subgroups, as some of our “five fundamental features".

Theorems that we have observed but haven't been able to prove yet will fall in our lap!

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 26 / 91


mailto:macaule@clemson.edu

Groups acting on themselves by right-multiplication
The group G acts on itself (that is, S = G) by right-multiplication:

¢: G— Perm(S) , d)(g) = the permutation that sends each x — xg.

m there is only one orbit: orb(x) = G, for all x € G
m the stabilizer of each x € G is stab(x) = (e)

m the fixed point set of each g € G is fix(g) = {e}
m the fixed points and kernel are both trivial:

Fix(¢) = ﬂ fix(g) = {e}, and Ker(¢) = m stab(s) = (e).

geG seS

Cayley’s theorem
If |G| = n, then there is an embedding G < S,.

Proof

Let G act on itself by right multiplication. This defines a homomorphism
¢: G — Perm(S) &£ S,,.

Since Ker(¢) = (e), it is an embedding. O
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Groups acting on themselves by conjugation

Another way a group G can act on itself (that is, S = G) is by conjugation:

¢: G — Perm(S), @(g) = the permutation that sends each x — g~ 1xg.

B The orbit of x € G is its conjugacy class:
orb(x) = {x.¢(g) g€ G} = {g‘lxg lge G} =cdg(x).
m The stabilizer of x is its centralizer:
stab(x) = {g € G| g7 'xg = x} = {9 € G | xg = gx} := Cs(x)
m The fixed point set of g € G is also its centralizer, because
fix(g) = {x € S| x.¢(9) = x} = {x € G| g7 'xg = x} = C5(9).

m The fixed points and kernel are the center, because

Fix(¢) = () fix(9) = () Cal9) = Z(G) = [ Ca(x) = () stab(x) = Ker(¢).

geG gei xeG xeG

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra

28 / 91


mailto:macaule@clemson.edu

Groups acting on themselves by conjugation

Let’s apply our two theorems:
1. Orbit-stabilizer theorem. “the size of an orbit is the index of the stabilizer":
|G

|Ca ()]

2. Orbit-counting theorem. “the number of orbits is the average number of elements
fixed by a group element'

|clg(x)| =[G : Ca(x)] =

#conjugacy classes of G = average size of a centralizer.

Let’s revisit our old example of conjugacy classes in Dg = {r, f):

0

1o < < e fe— r2f «<— r*f
S~—"

eﬁ:) e s c - rf €—— 3f €< r°f
S—"

Notice that the stabilizers are stab(r) = stab(r?) = stab(r*) = stab(r®) = (r),

stab(1) = stab(r®) = D, stab(r'f) = (r%, r'f).
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Groups acting on themselves by conjugation

Here is the “fixed point table’. Note that Ker(¢) = Fix(¢) = (r3).

1 r oot P forf  rPf  rB3f  r*f of
1 v v v v v v v v v v v v
r v v v v v v
r? v v v v v v
r3 v v v v v v v v v v v v
r# v v v v v v
s v v v v v v
f v v v v
f | v v v v
r’f | v v v v
rsf | v v v v
f v v v v
rf | v v v v

By the orbit-counting theorem, there are | Orb(¢)| = 72/|Ds| = 6 conjugacy classes.
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Groups acting on subgroups by conjugation
Any group G acts on its set S of subgroups by conjugation:
¢: G— Perm(S) s ¢(g) = the permutation that sends each H to g~1Hg.

This is a right action, but there is an associated left action: H + gHg™!.

Let H < G be an element of S.

m The orbit of H consists of all conjugate subgroups:
orb(H) = {g7'Hg | g € G} = clg(H).
m The stabilizer of H is the normalizer of H in G:
stab(H) = {g € G| g7 *Hg = H} = Ng(H).
m The fixed point set of g are the subgroups that g normalizes:
fix(H) = {H| g "Hg = H} = {H | g € Ng(H)}
m The fixed points of ¢ are precisely the normal subgroups of G:
Fix(¢) ={H< G| g 'Hg=H forallge G}.
m The kernel of this action is the set of elements that normalize every subgroup:

Ker(¢) = {9 € G| g tHg=H forall H< G} = () No(H).
H<G
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Groups acting on subgroups by conjugation

Let's apply our two theorems:
1. Orbit-stabilizer theorem. “the size of an orbit is the index of the stabilizer":

|G]
dg(H)| =[G : Ng(H)] = —— ;.
_ i | | ~ 7 ING(H)
2. Orbit-counting theorem. “the number of orbits is the average number of elements

fixed by a group element':

F£conjugacy classes of subgroups of G = average size of a normalizer.

G = Ng(N) G
) ‘
n Ng(K)
7 / \
’\/ N \/‘ R ‘K XQKXQ_]'"'XmKX,;I\/‘
normal fully unnormal moderately unnormal
|cle(N)| =1 |cl(H)| =[G : H]; as large as possible 1 < |clg(K)| < [G: K]
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Groups acting on subgroups by conjugation

Here is an example of G = D3 acting on its subgroups.

W = @ () () > D e o
M = 0 O n w2 D

~_
I N

i —~

() = M ) (N () (*F D  S— SN
= 0 0 im0 o
(2 =) 0 (O (P Ds SR

Observations
Do you see how to read stabilizers and fixed points off of the permutation diagram?
m Ker(¢) = (1) consists of the row(s) with only fixed points.
m Fix(¢) = {(1), (r), D3} consists of the column(s) with only fixed points.
m By the orbit-counting theorem, there are |Orb(¢)| = 24/|Ds| = 4 conjugacy classes.
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Groups acting on subgroups by conjugation
Here is an example of G = A4 = ((123), (12)(34)) acting on its subgroups.

¢A4’2

((12)(34), (13)(24))

K\ t)
((123))—((124))  ((134))—((234))

r\ /\
(12)(34)))  ((13)(24))  ((14)(23)))

i
Let's take a moment to revisit our “three favorite examples’ from Chapter 3.

N=((12)(34).(13)(24)),  H=((123)), K =((12)(34))-

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra

34 /01


mailto:macaule@clemson.edu

Groups acting on subgroups by conjugation

Here is the “fixed point table’ of the action of A4 on its subgroups.

(e)  ((123))  ((124)) ((134)) ((234)) ((12)(34)) ((13)(24)) ((14)(23))  ((12)(34).(13)(24))  As

e v v v v v v v v v v
(123) | v v v v
(132) | v v v v
(124) ' ' '
(142) v v '
(134) | v v v
(143) v v v
(234) | v v v
(243) v v v
(12)(34) | v v v
(13)(24) | v v v
(14)(23) | v v v

By the orbit-counting theorem, there are | Orb(¢)| = 60/|As| = 5 conjugacy classes.
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Groups acting on cosets of H by right-multiplication
Fix a subgroup H < G. Then G acts on its right cosets by right-multiplication:

(t): G — Perm(S) , d)(g) = the permutation that sends each Hx to Hxg.

Let Hx be an element of S = G/H (the right cosets of H).

m There is only one orbit. For example, given two cosets Hx and Hy,
d(x7ty) sends Hx — Hx(x"ly) = Hy.
m The stabilizer of Hx is the conjugate subgroup x~1Hx:
stab(Hx) = {g € G| Hxg = Hx} = {g € G| Hxgx ! = H} = x"1Hx.
m The doesn’'t seem to be a standard term for the fixed point set of g:
fix(g) = {Hx | Hxg = Hx} = {Hx | xgx~t e H}.
m Assuming H # G, there are no fixed points of ¢.
m The kernel of this action is the intersection of all conjugate subgroups of H:

Ker¢ = ﬂ stab(x) = m x"Hx.

x€G x€G

Notice that (e) < Ker¢ < H, and Ker¢ = H iff H < G.
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Groups acting on cosets of H by right-multiplication

The quotient process is done by collapsing the Cayley diagram by the left cosets of H.

In contrast, this action is the result of collapsing the Cayley diagram by the right cosets.
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Subgroups of small index
Groups acting on cosets is a useful technique for establishing seemingly unrelated results.
Several of these involving showing that subgroups of “small index” are normal.
We've already seen that subgroups of index 2 are normal.
Of course, there are non-normal index-3 subgroups, like (f) < Ds.

The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition

If G has no subgroup of index 2, then any subgroup of index 3 is normal.

Proof

Let H < G with [G : H] = 3.

Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism
¢$: G — S3.

K := Ker(¢) < H is the largest normal subgroup of G contained in H. By the FHT,

G/K = Im(¢) < Ss.
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Subgroups of small index

Proof (contin.)

Thus, there are three cases for this quotient:

G/K=S;, G/K=GC,  G/KG.

Visually, this means that we have one of the following:

G/K

N/K \\ 3

A/K B/K C/K K/K
K/K

G/K

K/K

By the corrdespondence theorem, K < H < G implies K/K < H/K < G/K.

Since G has no index-2 subgroup, only the middle case is possible (Why?).

This forces K/K = H/K, and so K = H which is normal for multiple reasons.
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Subgroups of small index

Proposition
Suppose H < G and [G : H] = p, the smallest prime dividing |G|. Then H < G.

Proof
Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

¢: G — Sp.

The kernel K = Ker(¢), is the largest normal subgroup of G such that K < H < G.

We'll show that H = K, or equivalently, that [H : K] = 1. By the correspondence theorem:

G G/K=S,

P P

H H/K

q is not divisible by any prime < p q divides (p — 1)!

K K/K

Do you see why g = 17
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Subgroups of small index

Recall that G is simple if its only normal subgroups are G and (e).

We just showed that if G is simple, then it cannot have a subgroup of index 2 or 3.

Proposition

If G is simple, then it cannot have a subgroup of index 4.

Proof
If HQ G and [G : H] = 4, then G/H = C4 or V4, so the subgroup lattice must be one of:
G/N G/N
A/N BJ/N C/N A/N

N2

In either case, we would have [G : A] = 2 by the correspondence theorem.

This would give an index-2 subgroup A < G, so G cannot be simple. O

v
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A summary of our four actions

Thus far, we have seen four important (right) actions of a group G, acting:

m on itself by right-multiplication

m on itself by conjugation.

m on its subgroups by conjugation.

m on the right-cosets of a fixed subgroup H < G by multiplication.

G

subgroups of G

right cosets of H

conjugation

conjugation

right multiplication

set S =

operation | multiplication
orb(s) all of G
stab(s) {e}
fix(g) {e} or 0
Ker(¢) {e}
Fix(¢) none

ce(9)
Ce(9)
Ce(9)
Z(G)

Z(G)

cl(H)
Ne(H)
{H | g € N6(H)}
() Ne(H)

H<G

normal subgroups

all right cosets

x~LHx

largest norm. subgp. N < H

none
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Actions of automorphism groups

Let’s revist the idea of automorophisms, but this time in a group action framework.

For any G, the automorphism group Aut(G) naturally acts on S = G via a homomorphism

¢: Aut(G) — Perm(S),

¢(0) = the permutation that sends each g — o(g).

Let’s see an example. Any o € Aut(Qg) must send / to an element of order 4: +/, &j, £k.

This leaves 4 choices for o(j). Therefore, | Aut(Qg)| < 24.

The inner automorphism group is Inn(Qg) = {Id, ©i, P;, ka}.

<i>/jj\0>
N

e

Inn(Qg) & Qs/(—1) = Vi

z iz JjZ kz

1 i | J| kK

—1| —i| =i |=kK

a@) | 1 i | J | Kk
cl(—1) —_1 —i| —J | —k
cl(i) cl(j) cl(k)

cosets of Z(Qg) are
in bijection with inner
automorphisms of Qg

inner automorphisms of
Qg permute elements
within conjugacy classes

All permutations of {i, j, k} define an outer automorphism, and so Out(Qs) = Ss.
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Automorphisms of Qg
All three groups Aut(Qs), Inn(Qsg), and Out(Qs) = Aut(Qg)/ Inn(Qs) act on S = Qs.

Inn(Qg) = Vs Out(Qg) = S3
] ] 0o 0
1 i J k 1 i J k
] |
—J —k —J = —k

-1 —i -1 L —
99 U 99 U V)
Overlaying these two diagrams gives the action on S = Qg by

Aut(Qg) = Inn(Qg) X Out(Qg) >V, xS3S,.

The group Aut(Qg) also acts on the conjugacy classes:
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Action equivalence

Let's recall the difference between left-conjugating and right conjugating:

“Left group action” "Right group action”
conjugate conjugate conjugate conjugate
by a by b by a by b
H_—— aHa ! —— baHa ‘b7 H a lHa b~ta~lHab
\WM W
d(a)¢(b) = ¢(ba) d(a)¢(b) = ¢(ab)

There's a better way to describe left actions than the faux-homomorphic ¢(a)@(b) = ¢(ba).

“Left group action” “Right group action”
right-conjugate rlght—conjulgate right-conjugate right-conjugate
- ~ by by b
H e aHat —22 baHa='b! H—"" g 1Ha —"—> pla Hab
right-conj. by @~ 1611 right-conj. by ab
d(aH)p(b~!) = d(a~tb7t) = ¢((ba) ) ®(a)¢(b) = ¢(ab)
Big idea

For every right action, there is an “equivalent” left-action where:

“pressing g-buttons, from L-to-R” < “pressing gil—buttons, from R-to-L".
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Action equivalence, informally
Action equivalence is more general. Consider two groups acting on sets, say via
¢1: Gi — Perm(Sy), and ¢2: G — Perm(Sz).

If these are “equivalent”, then we'll need
m a set bijectiono: S1 — S

m a group isomorphism ¢: G; — Go.

® ® =)

92 = 1(91)

=o(s1)

Informally, these actions are equivalent if:
1. pressing the gi-button in the Gi-switchboard, followed by
2. applying 0: S; — S, to get to the other diagram

is the same as doing these steps in reverse order. That is,
1. applying o: S; — Sy to get to the other diagram, then
2. pressing the t(g1)-button on the Go-switchboard.
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Action equivalence, formally

Definition
Two actions ¢1: G — Perm(S;1) and ¢o: Go — Perm(Sy) are equivalent if there is an
isomorphism ¢: G; — Gp and a bijection o: S; — S such that

oo ¢1(9) = ¢2((g9)) oo, forallge G.

We say that the resulting action diagrams are action equivalent.

This can be expressed with a commutative diagram:

s $1(9) S

2 ey 2

Action equivalence can be used to show that in our binary square example, we could have:
m defined ¢(r) to rotate clockwise, and ¢(f) to flip vertically
m used tiles with a and b, rather than 0 and 1

m read from right-to-left, rather than left-to-right, etc.
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Every right action has an equivalent left action

G acting on. .. right action equivalent left action
itself by multiplication X — Xg X g’lx
itself by conjugation x — g xg X > gxg !
its subgroups by conjugation | H +— g~ 1Hg H — gHg™!
cosets by multiplication H+— Hg Hw— g tH
Pr(9) Pr(9)
x xg x xg X $r(9) xg
T T
01 lo- cr[ Inot & Idl i not Id
! |
<
® 0 6(9) M
1 L(9) 1,1 (9) % g

Id
.<—

not an equivalence
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Every right action has an equivalent left action

G acting on. .. right action equivalent left action
itself by multiplication X > Xg x = g lx
itself by conjugation X > g’lxg X g><971
its subgroups by conjugation | H +— g‘ng H— gHg_1
cosets by multiplication H +— Hg H~— g tH
Recall that aH = bH implies Ha—! = Hb~ 1.
Hx = Hxr —  xHw rIxH=r5xH
or(9) Hx = Hxf xH s £~ L1xH = rxH
Hx — 289 Hxg
o
x"1H r——f(—gf)—% g IxIH

Since aH = bH # Ha = Hb, the the map xH — Hx is not even well-defined
49 /01
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Left and right actions of permutations

Recall the two “canonical” ways label a Cayley diagram for S3 = ((12), (23)) with the set
S ={123,132,213, 231, 312, 321}.
In one, (ij) can be interpreted to mean
“swap the numbers in the i*® and j** coordinates.”
Alternatively, (if) could mean

“swap the numbers i and j, regardless of where they are.”

123 123
213 132 213 132
S3 =((12),(23))
“swap numbers’ “swap coordinates’
right Cayley diagram
312\ /231 231\ /312
321 321
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Left and right actions of permutations

Canonically associate elements of D3 with S3 via an isomorphism:

F=(23)

‘ﬁ’ which acts on S = {123,132, 213, 231, 312, 321}

where
m “pressing the r-button” cyclically shifts the entries to the right,

m “pressing the f-button” transposes the last two entries (coordinates):
r()r@)r3) L 1@)r)r2),  w()r@)rE) P r(1)rG)(2).
This defines a right action, by the homomorphism
or: S3 — Perm(S), Or(T): w(1)7(2)7(3) — 7(7T(1))7(T(2))7(7(3)).
The equivalent left action permutes numbers, rather than entries

¢ : Sz — Perm(S), ¢L(1): m(1)7(2)7(3) —> Tfl(71'(1))7'*1(7r(2))7'*1(7r(3)).
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Left and right actions of permutations

right action “permutes positions” left action “permutes numbers’
(1) 7(2) w(3) m(1) 7(2) 7(3) 1 QA 3 1A2A 3
- w__~ \ ~—

312 231

\321\ \321\
( br 132—123 - ( ¢, 132—123
213/ /213</

231 312

r(U)r(@)n(3) =312 — D a(r(1))m(r(2))n(r(3)) = 321

1 1)r 1 (2)r1(3) = 231 BRCSLEN T Y Y1) (7 (2)) T (v (3)) = 321
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A creative application of a group action

Cauchy's theorem

If pis a prime dividing |G|, then G has an element (and hence a subgroup) of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e:
(X1, %0, ....xp) € P iff xix0---xp=e€.

Observe that |P| = |G|P~1. (We can choose xi, . .., x,—1 freely; then x, is forced.)

The group Zp acts on P by cyclic shift:

¢: Zp —> Perm(P), (x1, %2, ..., Xp) s (X2, X3 ..., Xp, X1) .
The set P is partitioned into orbits, each of size | orb(s)| = [Z, : stab(s)] = 1 or p.
The only way that the orbit of (x1, x2, ..., Xp) can have size 1is if x; = -+ = Xp.
Clearly, (e,...,€) € P is a fixed point.
The |G|P~! — 1 other elements in P sit in orbits of size 1 or p.

Since pt|G|P~! — 1, there must be other orbits of size 1. Thus, some (x,...,x) € P, with
X # e satisfies xP = e. O

v
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Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have:
m an element a of order 3

m an element b of order 2.

Clearly, G = (a, b), and so G must have the following “partial Cayley diagram”:

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

FS0—0 SO ve
- T EX

Exercise. Classify groups of order 8 with a similar argument.
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p-groups and the Sylow theorems

Definition
A p-group is a group whose order is a power of a prime p. A p-group that is a subgroup of
a group G is a p-subgroup of G.

Notational convention

Throughout, G will be a group of order |G| = p" - m, with pt m. That is, p" is the highest
power of p dividing |G]|.

v

There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.
3. Number: Strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.

Recall that a p-group is any group of order p". Examples, of 2-groups that we've seen
include C1, C4, V4, Dy and Qg, Cg, C4 X G, Dg, SDg, Q16, SAg, Pauliy,. ..

p-group Lemma
If a p-group G acts on a set S via ¢: G — Perm(S), then
[ Fix(¢)| =p |SI.
w
Proof (sketch)
Fix(¢) non-fixed points all in size-pK orbits
S G = I'I' (o]
uppose |G| = p b elts T o elts T ,,6 ite
(o]
By the orbit-stabilizer theorem, the only o /
possible orbit sizes are 1, p, p?, . .., p". f p3 elts p elts
o .

ey (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 56 / 91


mailto:macaule@clemson.edu

p-groups

Normalizer lemma, Part 1
If H is a p-subgroup of G, then

[Ng(H): H] =, [G: H].

Approach:
m Let H (not G!) act on the (right) cosets of H by (right) multiplication.

S is the set of cosets of H in G

Hy>

H HX2 e HXk Hy1 Hy3

Cosets of H in Ng(H) are the fixed points

m Apply our lemma: |Fix(¢)| =p |S].
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p-groups

Normalizer lemma, Part 1
If H is a p-subgroup of G, then
[NG(H): H] =, [G: H].

Proof

Let S= G/H = {Hx | x € G}. The group H acts on S by right-multiplication, via
¢: H — Perm(S), where

¢(h) — the permutation sending each Hx to Hxh.

The fixed points of ¢ are the cosets Hx in the normalizer Ng(H):
Hxh = Hx, Vhe H = Hxhx=! = H, VheH
— xhx~t € H, VheH
<~ X € N(;(H).

Therefore, | Fix(¢)| = [Ng(H): H], and |S| =[G : H]. By our p-group Lemma,

|Fix(¢)] =5 |S| = [Ng(H): H] = [G: H]. O
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the proof of
the normalizer lemma.
S = G/H = set of right cosets of H in G

© oo b

Ng(H)

O

The fixed points are precisely Orbits of size > 1 are of various sizes
the cosets in Ng(H) dividing |H|, but all lie outside Ng(H)
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p-subgroups
Recall that H < Ng(H) (always), and H is fully unnormal if H = Ng(G).

Normalizer lemma, Part 2

Suppose |G| = p"m, and H < G with |H| = p’ < p". Then H < Ng(H), and the index
[NG(H) : H] is a multiple of p.

[G : H] cosets of H (a multiple of p)

Hy>

H is not “fully unnormal’:

H< Ng(H) < G

H HX2 e HXk Hy1 Hy3

[NG(H) : H] > 1 cosets of H (a multiple of p)

Important corollaries
m p-groups cannot have any fully unnormal subgroups (i.e., H < Ng(H)).

m In any finite group, the only fully unnormal p-subgroups are maximal.
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Proof of the normalizer lemma

The normalizer lemma, Part 2

Suppose |G| = p"m, and H < G with |H| = p/ < p". Then H < Ng(H), and the index
[NG(H) : H] is a multiple of p.

Proof

Since H < Ng(H), we can create the quotient map
q: Ng(H) — Ng(H)/H., q:gr—gH.

The size of the quotient group is [Ng(H): H], the number of cosets of H in Ng(H).

By The normalizer lemma Part 1, [Ng(H): H] =5 [G: H]. By Lagrange’s theorem,

Na(H): H] =5 [G: H] = (ot = 27

=p"'m=,0.

Therefore, [Ng(H): H] is a multiple of p, so Ng(H) must be strictly larger than H.
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The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question

What group structural properties are possible, what are impossible, and how does this
depend on |G|?

One approach is to decompose large groups into "building block subgroups.” For example:

given a group of order 72 = 23 . 32, what can we say about its 2-subgroups and
3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter
Sylow (1832-1918).

The Sylow theorems address the following questions of a finite group G:
1. How big are its p-subgroups?
2. How are the p-subgroups related?
3. How many p-subgroups are there?
4

. Are any of them normal?
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An example: groups of order 12 Co Co x G

The Sylow theorems can be used to classify Cs G Cs Gs
all groups of order 12.
(G
We've already seen them all. -
, (G (G)
What patterns do you notice about the h h

2-groups and 3-groups, that might generalize
to all p-subgroups?

DiC6

Aq
/
Ce
o6 G 84\/) (Vi)
(E;) / \/C’3 63 _C3; E;/‘
2 \\ G G G
i

GGG G C
- \

C 1
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The Sylow theorems

Notational convention
Througout, G will be a group of order |G| = p" - m, with p{ m.

That is, p" is the highest power of p dividing |G|.
A subgroup of order p" is called a Sylow p-subgroup.

Let Syl(G) denote the set of Sylow subgroups, and np := | SyI(G)|.

There are three Sylow theorems, and loosely speaking, they describe the following about a
group's p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist, and they're “nested’.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on np, the number of Sylow p-subgroups.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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Our unknown group of order 12

Throughout, we will have a running example, a “mystery group” G of order 12 = 22 . 3.
We already know a little bit about G. By Cauchy's theorem, it must have:
m an element a of order 2, and

m an element b of order 3. G

7

|G|=12

G
[ ] . [ ] \ C2
. /
(e)

Using only the fact that |G| = 12, we will unconver as much about its structure as we can.
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The 1% Sylow theorem: existence of p-subgroups

First Sylow theorem
G has a subgroup of order pX, for each p* dividing |G|.

Also, every non-Sylow p-subgroup sits inside a larger p-subgroup.

Proof

The trivial subgroup {e} has order p°® = 1.

Big idea: Given a subgroup H < G of order p’ < p", we'll construct H' of order p'*?.

By the normalizer lemma, the order of the quotient Ng(H)/H is a multiple of p.

By Cauchy's theorem, Ng(H)/H has an element aH of order p. Therefore, (aH) = Cp.
Key idea: The group H’ we seek consists of the elements in these p cosets (“shoeboxes’).
Formally, this is the preimage of (aH) under the quotient q: Ng(H) — Ng(H)/H.

Specifically, g71(H), g~*(aH), g~ *(a®H), ..., g1 (aP~1H) are distinct cosets of H in
Ng(H), each of size p'.

Thus, the preimage H' = q~'({(aH)) contains p - |H| = p'*! elements. O
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The 1% Sylow theorem: existence of p-subgroups

Here is a picture of how we found the group H' = q~1((aH)).

q

p—1
Since |H| = p', the subgroup H' = U a*H contains p - |H| = p'*! elements.
k=0
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Our unknown group of order 12

By the first Sylow theorem, (a) is contained in a subgroup of order 4, which could be V4 or

Cy, or possibly both.

Y

|G|=12

G

/

(@7

G
\ )
/
(e)
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The 27 Sylow theorem: relationship among p-subgroups

Second Sylow theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

We'll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem

Let H € Syl(G), and K < G any p-subgroup. Then K is conjugate to a subgroup of H.

Order: p"m

p"
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The 27 Sylow theorem: All Sylow p-subgroups are conjugate

Strong second Sylow theorem

Let H be a Sylow p-subgroup, and K < G any p-subgroup. Then K is conjugate to some

subgroup of H.

Proof
Let S= G/H ={Hg | g € G}, the set of right cosets of H.

The group K acts on S by right-multiplication, via ¢: K — Perm(S), where
d)(k) = the permutation sending each Hg to Hgk.
A fixed point of ¢ is a coset Hg € S such that
Hgk = Hg, Yk e K — Hgkg~'=H, VYkeK
= gkgTl € H, VkeK
— gKg~! C H.
Thus, if we can show that ¢ has a fixed point Hg, we're done!

All we need to do is show that | Fix(¢)| #, 0. By the p-group Lemma,

[Fix(¢) =p |S| =[G : H] = m Zp 0.
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Our unknown group of order 12

By the second Sylow theorem, all Sylow p-subgroups are conjugate, and hence isomorphic.

This eliminates the following subgroup lattice of a group of order 12.
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Application: As has no nontrival proper normal subgroups

Ds D5 D D5 D5 Ds
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The normalizer of the normalizer

Notice how in As:
m all Sylow p-subgroups are moderately unnormal

m the normalizer of each Sylow p-subgroup is fully unnormal. That is:
Ng(Ng(P)) = Ng(P)

Proposition

Let P be a non-normal Sylow p-subgroup of G. Then its normalizer is fully unnormal.

Proof
We'll verify the equivalent statement of Ng(Ng(P)) = Ng(P).

Note that P is a normal Sylow p-subgroup of Ng(P).
By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of Ng(P).

Take an element x that normalizes Ng(P) (i.e., x € Ng(Ng(P)). We'll show that it also
normalizes P. By definition, xNg(P)x~* = Ng(P), and so

P < Ng(P) = xPx—1 < xNg(P)x~ = Ng(P).

But xPx~! is also a Sylow p-subgroup of Ng(P), and by uniqueness, xPx~1 = P.

O

y
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The 34 Sylow theorem: number of p-subgroups
Third Sylow theorem
Let np be the number of Sylow p-subgroups of G. Then
np divides |G| and np=p1l.

(Note that together, these imply that n, | m, where |G| = p" - m.)

Proof

The group G acts on S = Syl,(G) by conjugation, via ¢: G — Perm(S), where
¢(g) = the permutation sending each H to g~1Hg.

By the second Sylow theorem, all Sylow p-subgroups are conjugate!

Thus there is only one orbit, orb(H), of size n, = |S]|.

By the orbit-stabilizer theorem,

| orb(H)| | stab(H)| = | G| = np divides |G| .
~——

=np
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The 34 Sylow theorem: number of p-subgroups

Proof (cont.)

Now, pick any H € Syl,(G) = S. The group H acts on S by conjugation, via
0: H — Perm(S), where

6(h) = the permutation sending each K to h=1Kh.
Let K € Fix(8). Then K < G is a Sylow p-subgroup satisfying
hlkh=K, VheH <= H<NgK)<LG.
We know that:

m H and K are Sylow p-subgroups of G, but also of Ng(K).
m Thus, H and K are conjugate in Ng(K). (2nd Sylow Thm.)
m K < Ng(K), thus the only conjugate of K in Ng(K) is itself.

Thus, K = H. That is, Fix(8) = {H} contains only 1 element.

By the p-group Lemma, np := |S| =, | Fix(0)| = 1.
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Summary of the proofs of the Sylow theorems

For the 1st Sylow theorem, we started with H = {e}, and inductively created larger
subgroups of size p, p?, .. ., pn.

For the 274 and 34 Sylow theorems, we used a clever group action and then applied one or
both of the following:
(i) orbit-stabilizer theorem. If G acts on S, then |orb(s)|-|stab(s)| = |G]|.

(ii) p-group lemma. If a p-group acts on S, then |S| =, | Fix(¢)|.
To summarize, we used:

S2 The action of K € Syl,(G) on S = G/H by right multiplication for some other
H € Syl,(G).

S3a The action of G on S = Syl,(G), by conjugation.
S3b The action of H € Syl,(G) on S = Syl,(G), by conjugation.
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Our mystery group order 12

By the 3rd Sylow theorem, every group G of order 12 = 22 . 3 must have:

m n3 Sylow 3-subgroups, each of order 3.

ns3 |4, ng=1 (mod 3) =

m np Sylow 2-subgroups of order 22 = 4.

n |3, =1 (mod 2) =

But both are not possible! (There aren’t enough elements.)

Chapter 5: Groups acting on sets

n3=1or4.

n=1or3.
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The five groups of order 12 Co Co x G

With a litte work and the Sylow theorems, we Cs Co Cs GCs
can classify all groups of order 12.

7
G
We've already seen them all. Here are their -
subgroup lattices. \/:C;> (\C;)
Note that all of these decompose as a direct G
or semidirect product of Sylow subgroups. / ///
C1 Cl

DiC6

e \

G G G

//\6

C D3 Ds

Aq
// (Vi)

GG GG

() R
GGG G G G G G
= \ \\J//

G
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Simple groups and the Sylow theorems

Definition J

A group G is simple if its only normal subgroups are G and (e).

Simple groups are to groups what primes are to integers, and are essential to understand.

The Sylow theorems are very useful for establishing statements like:
There are no simple groups of order k (for some k).
Since all Sylow p-subgroups are conjugate, the following result is immediate.

Remark
A Sylow p-subgroup is normal in G iff it's the unique Sylow p-subgroup (that is, if n, = 1).J

Thus, if we can show that n, = 1 for some p dividing |G|, then G cannot be simple.

For some |G|, this is harder than for others, and sometimes it’s not possible.

Tip
When trying to show that np = 1, it's usually helpful to analyze the largest primes first. J
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An easy example

We'll see three examples of showing that groups of a certain size cannot be simple, in
successive order of difficulty.

Proposition

There are no simple groups of order 84.

Proof

Since |G| = 84 = 22 .3 .7, the third Sylow theorem tells us:
m n7 divides 22 -3 = 12 (so n7 € {1,2,3,4,6, 12})

mny=71.

The only possibility is that n; = 1, so the Sylow 7-subgroup must be normal. O

Observe why it is beneficial to use the largest prime first:

m n3 divides 22 -7 =28 and n3 =3 1. Thus n3 € {1,2,4,7,14,28}.

m np divides 3-7 =21 and ny =, 1. Thus nx € {1,3,7,21}.
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A harder example

Proposition

There are no simple groups of order 351.

Proof

Since |G| = 351 = 33 - 13, the third Sylow theorem tells us:
m np3 divides 33 = 27 (so ni3 € {1,3,9,27})
m m3 =13 L.

The only possibilies are n13 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order 33 = 27.
Therefore, PN Q = {e}.

Suppose ni3 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and so G
must contain 27 - 12 = 324 elements of order 13.

This leaves 351 — 324 = 27 elements in G not of order 13. Thus, G contains only one

Sylow 3-subgroup (i.e., n3 = 1) and so G cannot be simple. O

4
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The hardest example

Proposition
There are no simple groups of order 24 = 23 . 3. J

From the 3rd Sylow theorem, we can only conclude that ny € {1,3} and n3 = {1,4}.

Let H be a Sylow 2-subgroup, which has relatively "small” index: [G : H] = 3.

Lemma
If G has a subgroup of index [G : H] = n, and |G| does not divide n!, then G is not simple.

Proof
Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

¢$: G— Perm(S) ~S,, d)(g) = the permutation that sends each Hx to Hxg.

Recall that Ker(¢) < G, and is the intersection of all conjugate subgroups of H:

(e) < Ker¢p = ﬂ xTHx < G
x€eG

If Ker ¢ = (e) then ¢: G — S, is an embedding, which is impossible because |G|t nl. O
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Conjugacy classes in Ap

Elements in S, are conjugate iff they have the same cycle type.
However, 8 of the 12 elements in A4 are 3-cycles. These cannot all be conjugate.

Take o € Aj, and consider its conjugacy class in S,. By the orbit-stabilizer theorem,

els,(9)] = [0 C5,(0)] = (oo

There are two cases: (1) Cs, < Ap, or (2) Cs, £ An.
Case 1. Cy,(0) = Cs,(0), and by the orbit-stabilizer theorem,

nl/2 n!
1Can ()] 2ICs, (o)l

Conclusion: the conjugacy class splits into two.

Icla, (9) = [An = Ca,(0)] =

= 2ldis, ()]

Case 2. By the diamond theorem, exactly half of the permutations in Cs, (o) are even, so

nl/2
|Cs,(9)1/2

Conclusion: the conjugacy class is preserved upon restricting to Ap.

[cla, (9) = [An : Ca, ()] = [An : Cs,(0) N An] = = |dls, (o).

M. Macauley (Clemson) Chapter 5: Groups acting on sets Math 4120, Modern algebra 83 /91


mailto:macaule@clemson.edu

Simplicity of As

For example, Ss has 7 conjugacy classes: clss(e) = {e}, and

cs((12)), cls5((123)),  cls;((1234)),  cls;((12345)),  cls;((12)(34)),  cls, ((12)(345)).
To find the conjugacy classes of As, first disregard the odd permutations. Note that:

m Cs,(e) =S5

m Cs,((12)) and Cs,((123)) both contain (34) € As

m Cs,((12345)) < As
Therefore, the size-24 conjugacy class containing (12345) splits in As.

|cls, ((123))] = 20, |cls,((12345))| =12, |cls;((13524))] =12, |cls;((12)(34))] = 15.

Proposition

The alternating group As is simple.

Proof
Any normal subgroup of As must have order 2, 3, 4, 5, 6, 12, 15, 20, or 30.

It's also the union of conjugacy classes: {e} and others of sizes 12, 12, 15, and 20.

Other than As and (e), this is impossible.
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A generating set for A,

Lemma
For n > 3, the alternating group A, is generated by 3-cycles.

Proof
By definition, A, is generated by all products of pairs of transpositions.

m Type 1. Disjoint transpositions:
(ab)(cd) = (acd)(ach).
m Type 2. Overlapping transpositions:
(ab)(bc) = (acb).
We know that Az = ((123)) and Az = ((123), (234)), so let n > 5.

Claim. All 3-cycles are conjugate to (123) in Aj.

Take any 3-cycle (abc), and write

(abc) = o(123)07 1, o€ Sy

If o € Ap, we're done. Otherwise, conjugating by o - (45) € A, gives the same result. O
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Simplicity of A,

Theorem

The alternating group As is simple, for all n > 5.

Proof

Consider a nontrivial proper normal subgroup N < G.
All we have to do is show that N contains a 3-cycle. (Why?)
Pick any nontrivial o € IV, and write it as a product of disjoint cycles.
There are several cases to consider separately. We'll either
(i) construct a 3-cycle from o, or
(ii) construct an element in a previous case.
Case 1. o contains a k-cycle (ajax - - - ag) for k > 4.
Then N contains a 3-cycle:

(313283)0'(3157223)_1

eN

In the remaining cases, we can assume that o is a product of 3-cycles.

0 0'_1 = (213233)(8132 e ak)(a38221)(ak et agal) = (agagak) e N.
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Simplicity of A,

Theorem

The alternating group As is simple, for all n > 5.

Proof (contin.)

Case 2. ¢ has at least two 3-cycles; 0 = (aiazaz)(asasas) - - - -

If we conjugate o by (a1azas), we can also ignore the other (commuting) cycles in o.

(312234)0'(313224)_1 o O'_l = (al3234)[(318223)(342536) coo ](343231)[- oo (263534)(833231)]

eN

= (a1axazazas) € N.
We are now back in Case 1. v
Case 3. ¢ has only one 3-cycle; o = (aiazas)(azas)(asar) - - - .
Then 02 = (ajazaz) € N, and so o € N. v
We've exhausted the cases where o contains a 3-cycle.

In the remaining cases, we can assume that o is a product of pairs of 2-cycles.

v
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Simplicity of A,

Theorem

The alternating group As is simple, for all n > 5.

Proof (contin.)
Case 4. ¢ is a product of 2-cycles; o = (a1a2)(azas) - - .

If we conjugate o by (ajazasz), we can ignore the other (commuting) 2-cycles in o.

(312233)0(313233)_1 -O'_1 = (al3233)(3132)(3334)(333231)(3122)(3334)

eN

= (8184)(3233) e N.

Now, letting ™ = (ajasas),

(a]_a4)(3233)71'[(3134)(3283)]_1 -7r_1 = (al34)(3233)(313435)(3134)(3233)(853431)

eN

= (arasas) € N.

and this completes the proof.

y
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Classification of finite simple groups

Theorem (2004)
Every finite simple group is isomorphic to one of the following groups:
m A cyclic group Zp, with p prime;
m An alternating group A,, with n > 5;
m A Lie-type Chevalley group: PSL(n, g), PSU(n, q), PsP(2n, p), and PQ¢(n, q);
]

A Lie-type group (twisted Chevalley group or the Tits group): Da(q), Es(q), Ez(q),
Es(q), Fa(a), 2Fa(2"), Ga(q), 2G2(3"), 2B(2");
One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

m “baby monster group” B, which has order
|B| =2 .318.850.72.11.13.17-19.23-31-47 ~ 4.15 x 10%3,
m “monster group” M, which has order
M| =2%.320.59.76.112.13%.17.19-23-29.31-41-47-59-71 ~ 8.08 x 10°.

The proof of this classification theorem is spread across ~ 15,000 pages in =500 journal
articles by over 100 authors, published between 1955 and 2004.
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Image by I/van Andrus, 2012

The Periodic Table Of Finite Simple Groups
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Finite Simple Group (of Order Two), by The Klein Four™

Musical Fruitcake View More by This Artist

Klein Four

Open iTunes to preview, buy, and download music.

Name Artist Time Price
1 Power of One Klein Four 5:16 $0.99 View In iTunes »
2 Finite Simple Group (of Order Two) Klein Four 3:00 $0.99 View In iTunes »
3 Three-Body Problem Klein Four 3:17 $0.99 View In iTunes »
4 Just the Four of Us Klein Four 4:19 $0.99 View In iTunes »
5 Lemma Klein Four 3:43  $0.99 View In iTunes »
6 Calculating Klein Four 4:09 $0.99 View In iTunes »
7 XX Potential Klein Four 3:42  $0.99 View In iTunes »
$9.99
. 8 Confuse Me Klein Four 3:41 $0.99 View In iTunes »
Genres: Pop, Music
Released: Dec 05, 2005 9  Universal Klein Four 4:13  $0.99 View In iTunes »
® 2005 Klein Four
10 Contradiction Klein Four 3:48 $0.99 View In iTunes »
. 3 £ »
Customer Ratings 11 Mathematics Paradise Klein Four 3:51 $0.99 View In iTunes
ok k k9 13 Ratings 12 Stefanie (The Ballad of Galois) Klein Four 4:51 $0.99 View In iTunes b
13 Musical Fruitcake (Pass it Around) Klein Four 2:50 5$0.99 View In iTunes »
14 Abandon Soap Klein Four 2:17 $0.99 View In iTunes »
14 Songs
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