Read: Lax, Chapter 7, pages 77-100.

1. Let $X=\mathbb{R}^{3}$, and define the inner product by

$$
\langle x, y\rangle=y^{T} A x=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Find the norm of the three unit basis vectors e_{1}, e_{2}, and e_{3}, the angles between them, and the orthogonal complements of the lines that they span.
2. Given a linear map $A: X \rightarrow X$, define $f: X \rightarrow X$ by $f(x, y)=x^{T} A y$.
(a) Write the inner product $f(x, y)=3 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+2 x_{2} y_{2}-x_{2} y_{3}-x_{3} y_{2}+3 x_{3} y_{3}$ as $f(x, y)=x^{T} A y$.
(b) Find an orthonormal basis v_{1}, v_{2}, v_{3} of \mathbb{R}^{3} so that with respect to this basis, $f(z, w)=$ $z^{T} D w$ for some diagonal matrix D.
(c) Write a formula for $f(z, w)$ like in Part (b), but with respect to this new basis.
(d) State and prove necessary and suffcient conditions on A for f to be an inner product.
3. Let Y, Z be subspaces of an inner product space X.
(a) Show that $Y \subseteq Y^{\perp \perp}$, with equality holding if $\operatorname{dim} X<\infty$.
(b) Give an example of an infinite dimensinal space where equality does not hold.
(c) Show that $(Y+Z)^{\perp}=Y^{\perp} \cap Z^{\perp}$.
4. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $y_{1}=(1,2,1,1), y_{2}=(1,-1,0,2)$ and $y_{3}=(2,0,1,1)$.
Then write the vector $v=(4,1,2,4)$ in this basis.
5. Let X be the vector space of all continuous real-valued functions on $[0,1]$. Define an inner product on X by

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Let Y be the subspace of X spanned by $f_{0}, f_{1}, f_{2}, f_{3}$, where $f_{k}(x)=x^{k}$.
(a) Use the Gram-Schmidt process to construct an orthonormal basis for Y.
(b) Write $f(x)=2 x^{3}-x^{2}+4$ using your basis from Part (a).

