Read: Lax, Chapter 7, pages 89-100.

1. Let x_{1}, x_{2} be a basis of $X=\mathbb{R}^{2}$, and ℓ_{1}, ℓ_{2} the dual basis. Carry out the steps below for the linear map $A: X \rightarrow X$ defined by $A\left(x_{1}\right)=x_{1}$ and $A\left(x_{2}\right)=x_{1}+x_{2}$ with respect to the standard dot product, and then with respect to each of the following inner products:

$$
\langle x, y\rangle:=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \text { and } \quad\langle x, y\rangle:=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(a) Find $v_{i} \in X$ for which $\ell_{i}=\left\langle-, v_{i}\right\rangle$, for $i=1,2$.
(b) Find $y_{i} \in X$ for which $A^{\prime}\left(\ell_{i}\right)=\ell_{i} \circ A=\left\langle-, y_{i}\right\rangle$, for $i=1,2$.
(c) Find the adjoint $A^{*}: X \rightarrow X$ with respect to this inner product.
2. Let $A: X \rightarrow U$ be a linear map between finite-dimensional inner product spaces, and let $A^{*}: U \rightarrow X$ denote the adjoint. Prove each of the following equalities:
(a) $N_{A^{*}}=R_{A}^{\perp}$
(c) $N_{A}=R_{A^{*}}^{\perp}$
(b) $R_{A^{*}}=N_{A}^{\perp}$
(d) $R_{A}=N_{A^{*}}^{\perp}$.
3. Let $A: X \rightarrow U$ be a linear map between finite-dimensional inner product spaces. The map A has a left inverse if there is a linear map $L: U \rightarrow X$ such that $L A=I_{X}$, the identity on X. It has a right inverse if there is a linear map $R: U \rightarrow X$ such that $A R=I_{U}$ is the identity on U.
(a) Prove that A maps $R_{A^{*}}$ bijectively onto R_{A}.
(b) Show that if A has a left inverse, then $A x=u$ has at most one solution. Give a condition on u that completely characterizes when there is a solution.
(c) Show that if A has a right inverse, then $A x=u$ has at least one solution. If $A x_{p}=u$ for some particular $x_{p} \in X$, then describe all solutions for x in this case. What condition ensures that there will be only one solution?
(d) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?
4. A projection $P: X \rightarrow X$ is a linear map such that $P^{2}=P$.
(a) Show that if P is a projection, then $X=R_{P} \oplus N_{P}$.
(b) Show that $R_{P}^{\perp}=N_{P}$ if and only if P is self-adjoint.
5. Consider four data points $(0,0),(1,8),(3,8)$, and $(4,20)$. In this problem, we will find the best fit line $C+D t$ through these points, using least squares.
(a) Write down an equation in matrix form, $A x=b$, where $x=(C, D)^{T}$, that has no solution because these four points are not co-linear.
(b) Find the best fit line by solving the related equation $A \hat{x}=p$, where p is the orthogonal projection of b onto the range of A.
(c) Repeat the previous steps to find the best fit parabola $C+D t+E t^{2}$.

