Read: Lax, Chapter 7, pages 89–100.

1. Let x_1, x_2 be a basis of $X = \mathbb{R}^2$, and ℓ_1, ℓ_2 the dual basis. Carry out the steps below for the linear map $A: X \to X$ defined by $A(x_1) = x_1$ and $A(x_2) = x_1 + x_2$ with respect to the standard dot product, and then with respect to each of the following inner products:

$$\langle x,y \rangle := \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \text{and} \quad \langle x,y \rangle := \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- (a) Find $v_i \in X$ for which $\ell_i = \langle -, v_i \rangle$, for i = 1, 2.
- (b) Find $y_i \in X$ for which $A'(\ell_i) = \ell_i \circ A = \langle -, y_i \rangle$, for i = 1, 2.
- (c) Find the adjoint $A^*: X \to X$ with respect to this inner product.
- 2. Let $A: X \to U$ be a linear map between finite-dimensional inner product spaces, and let $A^*: U \to X$ denote the adjoint. Prove each of the following equalities:
 - (a) $N_{A^*} = R_A^{\perp}$

(c) $N_A = R_{A^*}^{\perp}$

(b) $R_{A^*} = N_A^{\perp}$

- (d) $R_A = N_{A^*}^{\perp}$.
- 3. Let $A: X \to U$ be a linear map between finite-dimensional inner product spaces. The map A has a *left inverse* if there is a linear map $L: U \to X$ such that $LA = I_X$, the identity on X. It has a *right inverse* if there is a linear map $R: U \to X$ such that $AR = I_U$ is the identity on U.
 - (a) Prove that A maps R_{A^*} bijectively onto R_A .
 - (b) Show that if A has a left inverse, then Ax = u has at most one solution. Give a condition on u that completely characterizes when there is a solution.
 - (c) Show that if A has a right inverse, then Ax = u has at least one solution. If $Ax_p = u$ for some particular $x_p \in X$, then describe all solutions for x in this case. What condition ensures that there will be *only* one solution?
 - (d) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?
- 4. A projection $P: X \to X$ is a linear map such that $P^2 = P$.
 - (a) Show that if P is a projection, then $X = R_P \oplus N_P$.
 - (b) Show that $R_P^{\perp} = N_P$ if and only if P is self-adjoint.
- 5. Consider four data points (0,0), (1,8), (3,8), and (4,20). In this problem, we will find the best fit line C + Dt through these points, using least squares.
 - (a) Write down an equation in matrix form, Ax = b, where $x = (C, D)^T$, that has no solution because these four points are not co-linear.
 - (b) Find the best fit line by solving the related equation $A\hat{x} = p$, where p is the orthogonal projection of b onto the range of A.
 - (c) Repeat the previous steps to find the best fit parabola $C + Dt + Et^2$.