Section 3: Multilinear forms

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

One of the goals of this section is to understand the concept of the determinant in a basis-free manner.

Formally, the determinant is the unique normalized alternating n-linear form satifying a particular "universal property".

To get there, we'll explore the concept of a multilinear, or k-linear form.
This actually generalizes several familiar concepts:

- A 1-linear form is just a scalar function $X \rightarrow K$.
- A 2-linear form is just a bilinear function $X \times X \rightarrow K$.

We'll have to understand various types of multilinear forms: symmetric, skew-symmetric, and alternating.

Before we can do this, we will cover two prerequesites:

- an overview as to what the determinant means geometrically (for motivation)
- a crash course on permutations.

Later on, we'll see related concepts such as the trace and tensors.

What is a determinant?

Definition (unofficial)
The determinant of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the signed volume of $T\left([0,1]^{n}\right)$, the image of the unit n-cube.

Permutations

Definition

Let $[n]:=\{1, \ldots, n\}$. A permutation is a bijection $\pi:[n] \rightarrow[n]$. The set of all $n!$ permutations is the symmetric group, S_{n}.

Definition

The discriminant of variables x_{1}, \ldots, x_{n} is

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Permuting variables only changes the sign of the discriminant:

$$
P\left(\pi\left(x_{1}, \ldots, x_{n}\right)\right)=\prod_{i<j}\left(x_{\pi(i)}-x_{\pi(j)}\right)=\underbrace{\operatorname{sgn}(\pi)}_{ \pm 1} \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

We call $\operatorname{sgn}(\pi)$ the sign of the permutation π.

Transpositions

A transposition is a permutation $\tau \in S_{n}$ that swaps two entries and fixes the rest. That is,

$$
\tau(i)=j, \quad \tau(j)=i, \quad \tau(k)=k, \quad \text { if } k \neq i, j .
$$

We write this as (ij).

Proposition (HW)

(i) $\operatorname{sgn}\left(\pi_{1} \circ \pi_{2}\right)=\operatorname{sgn}\left(\pi_{1}\right) \operatorname{sgn}\left(\pi_{2}\right)$
(ii) $\operatorname{sgn}(\tau)=-1$ for any transposition
(iii) every $\pi \in S_{n}$ can be written as a composition of transpositions: $\pi=\tau_{k} \circ \cdots \circ \tau_{1}$
(iv) the parity of this decomposition is unique
(v) if $\pi=\tau_{k} \circ \cdots \circ \tau_{1}$, then $\operatorname{sgn}(\pi)=(-1)^{k}$.

Multilinearity

Loosely speaking, linearity means we can pull apart sums and constants. We have seen:

1. Dual vectors: linear scalar functions $X \rightarrow K$
2. Scalar products: bilinear functions $U^{\prime} \times X \rightarrow K$
n. Determinants: functions on n (row or column) vectors where we can break apart certain sums and pull out constants.

These are all examples of multilinear functions.
The determinant is actually a property of a linear map, not a matrix. In this section, we will define and study the determinant in this more abstract context.

The set of k-linear forms $X \times \cdots \times X \rightarrow K$ is a vector space of dimension n^{k}.
The following subclasses of k-linear forms are important subspaces:

- symmetric
- skew-symmetric
- alternating

k-linear forms

Definition

A k-linear form is a function $f: X_{1} \times \cdots \times X_{k} \rightarrow K$ that is linear in each coordinate.
That is, if we fix $k-1$ inputs, it is linear in the remaining input.

Unless otherwise stated, we will assume that $X:=X_{1}=\cdots=X_{k}$.

1. 1-linear forms are linear functions in $X \rightarrow K$.
2. 2-linear forms are bilinear forms $X \times X \rightarrow K$.
3. A 3-linear form is a function $X \times X \times X \rightarrow K$.

The vector space of multilinear forms

Proposition

Let $\operatorname{dim} X=n$. The set of k-linear forms $X \times \cdots \times X \rightarrow K$ is a vector space of dimension n^{k}.

Symmetric and skew-symmetric multilinear forms

Let $f: X \times \cdots \times X \rightarrow K$ be a k-linear form.
For any permutation $\pi \in S_{k}$, define the k-linear form πf by

$$
(\pi f)\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{\pi_{1}}, \ldots, x_{\pi_{k}}\right) .
$$

Definition

A k-linear form is:

1. symmetric if $\pi f=f$ for every permutation $\pi \in S_{k}$
2. skew-symmetric if $\tau f=-f$ for every transposition $\tau \in S_{k}$.

Symmetric, skew-symmetric, and alternating forms

Recall that a k-linear form $f: X \times \cdots \times X \rightarrow K$ is:
■ symmetric if $\pi f=f$ for all $\pi \in S_{k}$,

- skew-symmetric if $\tau f=-f$ for all transpositions $\tau \in S_{k}$.

Definition

A k-linear form is alternating if $f\left(x_{1}, \ldots, x_{k}\right)=0$ whenever $x_{i}=x_{j}(i \neq j)$.

It is easy to show that the set of alternating (respectively, symmetric or skew-symmetric) k-linear forms is a subspace of $\mathcal{T}^{k}\left(X^{\prime}\right)$.

Alternating vs. skew-symmetric

Proposition 3.1

Every alternating form is skew-symmetric.

Corollary 3.2

If $1+1 \neq 0$, then every skew-symmetric form is alternating.

Alternating forms and linear dependence

Proposition 3.3

If f is alternating and y_{1}, \ldots, y_{k} is linearly dependent, then $f\left(y_{1}, \ldots, y_{k}\right)=0$.

Alternating forms and linear independence

Proposition 3.4
If f is a nonzero alternating n-linear form and e_{1}, \ldots, e_{n} a basis, then $f\left(e_{1}, \ldots, e_{n}\right) \neq 0$.

Corollary 3.5
Any two alternating n-linear forms are linearly dependent.

Symmetric, skew-symmetric, and alternating forms

Throughout, $\operatorname{dim} X=n<\infty$. Recall that a k-linear form $f: X \times \cdots \times X \rightarrow K$ is:

- symmetric if $\pi f=f$ for all $\pi \in S_{k}$
- skew-symmetric if $\tau f=-f$ for all transpositions $\tau \in S_{k}$
- alternating if $f\left(x_{1}, \ldots, x_{k}\right)=0$ whenever $x_{i}=x_{j}(i \neq j)$.

All of these are subspaces of $\mathcal{T}^{k}\left(X^{\prime}\right)$, the space of k-linear forms. What are their dimensions?

Goal

Show that the subspace of alternating n-linear forms is 1 -dimensional, by verifying

- any two alternating n-linear forms are linearly dependent (see previous lecture)
- there is a non-zero alternating n-linear form.

The determinant of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the unique alternating n-linear form satisfying $T\left(e_{1}, \ldots, e_{n}\right)=1$.

But we'd still like a definition that doesn't refer to the choice of basis...

The dimension of the subspace of alternating n-linear forms is ≥ 1

Proposition 3.5
There is a nonzero alternating n-linear form.

Determinants, at last

Let $T: X \rightarrow X$ be linear. For an alternating n-linear f, define a new alternating n-linear form

$$
\bar{T} f: X^{n} \longrightarrow K, \quad(\bar{T} f)\left(x_{1}, \ldots, x_{n}\right)=f\left(T_{x_{1}}, \ldots, T x_{n}\right)
$$

That is, T induces a map \bar{T} on the (1-dimensional) space of alternating n-linear forms:

$$
f \longmapsto \bar{T} f .
$$

But any linear map on a 1-dimensional space is just scalar multiplication, $x \mapsto \lambda x$. Therefore,

$$
\bar{T}: f \longmapsto \lambda f .
$$

The scalar λ is called the determinant of T. It satisfies the following.

Universal property of the determinant

Given a linear map $T: X \rightarrow X$, there exists a unique scalar λ such that for every alternating n-linear form f,

$$
f\left(T x_{1}, \ldots, T x_{n}\right)=\lambda f\left(x_{1}, \ldots, x_{n}\right)
$$

A few basic properties of determinants
If $T x=c x$, then

$$
(\bar{T} f)\left(x_{1}, \ldots, x_{n}\right)=f\left(T_{x_{1}}, \ldots, T x_{n}\right)=f\left(c x_{1}, \ldots, c x_{n}\right)=c^{n} f\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, $\operatorname{det} T=c^{n}$.
It follows that $\operatorname{det} 0=0$ and $\operatorname{det}(I d)=1$.

Proposition 3.6

For any two linear maps $A, B: X \rightarrow X$,

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

Corollary 3.7

If $A: X \rightarrow X$ is invertible, then $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1} \neq 0$.

The determinant of a 2×2 matrix

The determinant of an $n \times n$ matrix can be thought of as an alternating n-linear function of its column vectors.

Let's use bilinearity to find a formula for the determinant of $A=\left[\begin{array}{ll}l_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$.

The determinant of a 3×3 matrix

Let's now apply this to finding the determinant of $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$.

The determinant of an $n \times n$ matrix

Proposition 3.8

The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} a_{1, \pi(1)} a_{2, \pi(2)} \cdots a_{n, \pi(n)},
$$

and by symmetry, $\operatorname{det} A=\operatorname{det} A^{T}$.

The trace of a matrix

Definition

The trace of an $n \times n$ matrix is $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$.

Proposition 3.9

(a) Trace is linear: $\operatorname{tr}(k A)=k(\operatorname{tr} A)$ and $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
(b) Trace is "commutative": $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(c) Similar matrices have the same determinant and trace.

Minors and cofactors

Lemma 3.10

Let $A=\left[c_{1}, \ldots, c_{n}\right]$ be an $n \times n$ matrix, and define B by adding $k c_{i}$ to the $j^{\text {th }}$ column, for $i \neq j$. Then $\operatorname{det} A=\operatorname{det} B$.

Definition

Let A be an $n \times n$ matrix, and let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix formed by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

- The (i, j) minor of A is $M_{i j}:=\operatorname{det} A_{i j}$.
- The (i, j) cofactor of A is $C_{i j}:=(-1)^{i+j} \operatorname{det} A_{i j}$.

Lemma 3.11

Let A be an $n \times n$ matrix with first column e e i.e., $A=\left[\begin{array}{cc}1 & - \\ 0 & A_{11}\end{array}\right]$. Then $\operatorname{det} A=C_{11}$.

Corollary 3.12

Let A be a matrix whose $j^{\text {th }}$ column is e_{i}. Then

$$
\operatorname{det} A=C_{i j}
$$

Laplace expansion

Recall: If the $j^{\text {th }}$ column of A is e_{i}, then $\operatorname{det} A=C_{i j}$.

Theorem (Laplace expansion)

The determinant of A is

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i j} C_{i j},
$$

for any fixed $j=1, \ldots, n$.

Systems of equations

Consider an invertible matrix, written as an n-tuple of its column vectors:

$$
A=\left(a_{1}, \ldots, a_{n}\right)=\left(A e_{1}, \ldots, A e_{n}\right)
$$

The system of equations $A x=u$, with $x=\sum_{j=1}^{n} x_{j} e_{j}$ can be written

$$
\sum_{j=1}^{n} x_{j} a_{j}=u
$$

For each k, define the matrix

$$
A_{k}=\left(a_{1}, \ldots, a_{k-1}, u, a_{k+1}, \ldots, a_{n}\right)
$$

and let's compute its determinant.

A formula for A^{-1}

Theorem (Cramer's rule)

The solution to the system of equations $A x=u$, with $x=\sum_{j=1}^{n} x_{j} e_{j}$ is

$$
x_{k}=\frac{1}{\operatorname{det} A} \sum_{i=1}^{n} C_{i k} u_{i}
$$

Theorem 3.13
If A is invertible, then the (i, j)-entry of its inverse A^{-1} is

$$
\left(A^{-1}\right)_{i j}=\frac{C_{j i}}{\operatorname{det} A} .
$$

The idea behind tensor products

Consider two vector spaces U, V over K, and say $\operatorname{dim} U=n$ and $\operatorname{dim} V=m$. Then

$$
U \cong\left\{a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{i} \in K\right\}, \quad V \cong\left\{b_{m-1} y^{m-1}+\cdots+b_{1} x+b_{0} \mid b_{i} \in K\right\} .
$$

The direct product $U \times V$ has basis

$$
\left\{\left(x^{n-1}, 0\right), \ldots,(x, 0),(1,0)\right\} \cup\left\{\left(0, y^{m-1}\right), \ldots,(0, y),(0,1)\right\} .
$$

An arbitrary element has the form

$$
\left(a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, b_{m-1} y^{m-1}+\cdots+b_{1} y+b_{0}\right) \in U \times V
$$

Notice that $\left(3 x^{i}, y^{j}\right) \neq\left(x^{i}, 3 y^{j}\right)$ in $U \times V$.
There is another way to "multiply" the vector spaces U and V together. It is easy to check that the following is a vector space:

$$
\left\{\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} c_{i j} x^{i} y^{j} \mid c_{i j} \in K\right\} .
$$

This is the idea of the tensor product, denoted $U \otimes V$.
Formalizing this is a bit delicate. For example, $3 x^{i} \cdot y^{j}=x^{i} \cdot\left(3 y^{j}\right)=3\left(x^{i} \cdot y^{j}\right)$.

The tensor product in terms of bases

Though we are normally not allowed to "multiply" vectors, we can define it by inventing a special symbol.

Denote the formal "product" of two vectors $u \in U$ and $v \in V$ as $u \otimes v$.
Pick bases u_{1}, \ldots, u_{n} for U and v_{1}, \ldots, v_{m} for V.

Definition

The tensor product of U and V is the vector space with basis $\left\{u_{i} \otimes v_{j}\right\}$.

By definition, every element of $U \otimes V$ can be written uniquely as

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j}\left(u_{i} \otimes v_{j}\right)
$$

It is immediate that $\operatorname{dim}(U \otimes V)=(\operatorname{dim} U)(\operatorname{dim} V)$.

Remark

Not every multivariate polynomial in x and y factors as a product $p(x) q(y)$.
Not every element in $U \otimes V$ can be written as $u \otimes v$ - called a pure tensor.

A basis-free construction of the tensor product

Given vector spaces U and V, let $F_{U \times V}$ be the vector space with basis $U \times V$:

$$
F_{U \times V}=\left\{\sum c_{u v} e_{u, v} \quad \mid \quad u \in U, v \in V\right\} .
$$

For all $u, u^{\prime} \in U$ and $v, v^{\prime} \in V$, we "need" the following to hold:

$$
e_{u+u^{\prime}, v}=e_{u, v}+e_{u^{\prime}, v} \quad e_{u, v+v^{\prime}}=e_{u, v}+e_{u, v^{\prime}} \quad e_{c u, v}=c e_{u, v} \quad e_{u, c v}=c e_{u, v} .
$$

Consider the set of "null sums" from $F_{U \times V}$:

$$
\begin{aligned}
S= & {\left[\bigcup_{\substack{u, u^{\prime} \in U \\
v \in V}} e_{u+u^{\prime}, v}-e_{u, v}-e_{u^{\prime}, v}\right] \cup\left[\bigcup_{\substack{u \in U \\
v, v^{\prime} \in V}} e_{u, v+v^{\prime}}-e_{u, v}-e_{u, v^{\prime}}\right] } \\
& \cup\left[\bigcup_{\substack{u \in U, v \in V \\
c \in K}} e_{c u, v}-c e_{u, v}\right] \cup\left[\bigcup_{\substack{u \in U, v \in V \\
c \in K}} e_{u, c v}-c e_{u, v}\right] .
\end{aligned}
$$

Let $N_{q}=\operatorname{Span}(S)$. Denote the equivalence class of $e_{u, v} \bmod N_{q}$ as $u \otimes v$.

Definition

The tensor product of U and V is the quotient space $U \otimes V:=F_{U \times V} / N_{q}$.

Why this basis-free construction works

Let W be a vector space with basis $\left\{w_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Define the linear map

$$
\alpha: W \longrightarrow U \otimes V, \quad \alpha: w_{i j} \longmapsto u_{i} \otimes v_{j} .
$$

We'd like to define the (inverse) map $\beta: U \otimes V \rightarrow W$, but to do so, we need a basis for $U \otimes V$. What we can do is define a map

$$
\tilde{\beta}: F_{U \times V} \longrightarrow W, \quad \tilde{\beta}: e_{\Sigma a_{i} u_{i}, \Sigma b_{j} v_{j}} \longmapsto \sum_{i, j} a_{i} b_{j} w_{i j} .
$$

Remark (exercise)

The nullspace of $\tilde{\beta}$ contains the nullspace of q.

Since $N_{q} \subseteq N_{\tilde{\beta}}$, the map $\tilde{\beta}$ factors through $F_{U \times V} / N_{q}:=U \otimes V$:

The maps α and β are inverses because $\alpha \circ \beta=\operatorname{Id}_{U \otimes V}$ and $\beta \circ \alpha=\operatorname{Id}_{W}$.

Universal property of the tensor product

Let $\tau: U \times V \rightarrow U \otimes V$ be the map $(u, v) \mapsto u \otimes v$.
The following says that every bilinear map from $U \times V$ can be "factored through" $U \otimes V$.

Theorem 3.14

For every bilinear $\beta: U \times V \rightarrow X$, there is a unique linear $L: U \otimes V \rightarrow X$ such that $\beta=L \circ \tau$.

The universal property can provide us with alternate proofs of some basic results, such as:
(i) $\left\{u_{i} \otimes v_{j}\right\}$ is linearly independent
(ii) $U \otimes V \cong V \otimes U$
(iii) $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$
(iv) $(U \times V) \otimes W \cong(U \otimes W) \times(V \otimes W)$.

Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

$$
U \otimes V \longrightarrow \operatorname{Hom}\left(U^{\prime}, V\right), \quad u \otimes v \longmapsto(\ell \mapsto(\ell, u) v)
$$

The following shows the linear map $\ell \stackrel{E_{i j}}{\longmapsto}\left(\ell, u_{i}\right) v_{j}$ in matrix form:

$$
\underbrace{\left[\begin{array}{lllll}
c_{1} & \cdots & c_{i} & \cdots & c_{n}
\end{array}\right]}_{\ell=\sum c_{i} \ell_{i} \in U^{\prime}} \underbrace{\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & & 1 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]}_{E_{i j}:=v_{j}^{T} u_{i}}=\underbrace{\left[\begin{array}{llll}
0 & \cdots & c_{i} & \cdots
\end{array}\right.}_{c_{i} v_{j} \in V} \begin{array}{l}
0
\end{array}]
$$

More generally:

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \otimes\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]=v u^{T}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]=\left[\begin{array}{cccc}
v_{1} u_{1} & v_{1} u_{2} & \cdots & v_{1} u_{n} \\
v_{2} u_{1} & v_{2} u_{2} & \cdots & v_{2} u_{n} \\
\vdots & \vdots & \ddots & \vdots \\
v_{m} u_{1} & v_{m} u_{2} & \cdots & v_{m} u_{n}
\end{array}\right]
$$

Tensors as a way to extend an \mathbb{R}-vector space to a \mathbb{C}-vector space

Let X be an \mathbb{R}-vector space with basis $\left\{x_{1}, \ldots, x_{n}\right\}$.
Note that \mathbb{C} is a 2-dimensional \mathbb{R}-vector space, with basis $\{1, i\}$.
Suppose $A: X \rightarrow X$ is a linear map with eigenvalues $\lambda_{1,2}= \pm i$.
If v is an eigenvector v for $\lambda=i$, then $v \notin X$. But v should live in some "extension" of X.
In this bigger vector space, we want to have vectors like

$$
z v, \quad z \in \mathbb{C}, \quad v \in X
$$

What we really want is $\mathbb{C} \otimes X$, which has basis

$$
\left\{1 \otimes x_{1}, \ldots, 1 \otimes x_{n}, i \otimes x_{1}, \ldots, i \otimes x_{n}\right\} "="\left\{x_{1}, \ldots, x_{n}, i x_{1}, \ldots, i x_{n}\right\} .
$$

Notice how the associativity that we would expect comes for free with the tensor product, and compare it to the other examples from this lecture:

$$
(3 i) v=i(3 v), \quad\left(3 x^{i}\right) y^{j}=x^{i}\left(3 y^{j}\right), \quad(3 u) v^{T}=u\left(3 v^{T}\right), \quad 3 u \otimes v=u \otimes 3 v .
$$

