Section 4: Spectral theory

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Assumptions and definitions

This section is all about eigenvalues and eigenvectors of a linear map.
In most introductory courses, students learn that repeated eigenvalues often lead to "missing eigenvectors."

However, that's only half of the story - we'll see how there's always a basis of generalized eigenvectors.

This basis leads to the Jordan canonical form, and we'll see how this arises in linear differential equations.

Throughout, we will assume that A is an $n \times n$ matrix over K. Thus, it represents an endomorphism of a vector space $X \cong K^{n}$.

We will assume that K is algebraically closed, which means that every non-constant polynomial has a root in K.

The most common algebraically closed field is $K=\mathbb{C}$.

Definition

If $A v=\lambda v$ for some nonzero vector v and scalar $\lambda \in K$, then v is an eigenvector and λ is an eigenvalue.

Existence of eigenvectors

Proposition 4.1

A has an eigenvector.

An example

Remark

$A-\lambda I$ is noninvertible iff $\operatorname{det}(A-\lambda I)=0$. That is, λ is an eigenvalue of A iff $\operatorname{det}(A-\lambda I)=0$, and the corresponding eigenvector is any $v \neq 0$ in $N_{A-\lambda I}$.

Let's compute the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$.

Linear independence of eigenvectors

Proposition 4.2

Eigenvectors of A corresponding to distinct eigenvalues are linearly independent.

Diagonalizability

Proposition 4.3

If X has a basis of eigenvectors of A, then A is similar to a diagonal matrix. We say that A is diagonalizable.

The characteristic polynomial

Throughout, $A: X \rightarrow X$ will be an $n \times n$ matrix over an algebraically closed field K.

Definition

The characteristic polynomial of A is

$$
p_{A}(t)=\operatorname{det}(t l-A) .
$$

$$
\operatorname{det}(t I-A)=\left|\begin{array}{cccccc}
t-a_{11} & -a_{12} & -a_{13} & \ldots & -a_{1(n-1)} & -a_{1 n} \\
-a_{21} & t-a_{22} & -a_{23} & \ldots & -a_{2(n-1)} & -a_{2 n} \\
-a_{31} & -a_{32} & t-a_{33} & \ldots & -a_{3(n-1)} & -a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-a_{(n-1) 1} & -a_{(n-1) 2} & -a_{(n-1) 3} & \ldots & t-a_{(n-1)(n-1)} & -a_{(n-1) n} \\
-a_{n 1} & -a_{n 2} & -a_{n 3} & \ldots & -a_{n(n-1)} & t-a_{n n}
\end{array}\right|
$$

Remarks

- Recall that det $M=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) m_{\pi(1), 1} m_{\pi(2), 2} \cdots m_{\pi(n), n}$.
- The characteristic polynomial has degree n, and its roots are the eigenvalues of A.

Determinant and trace, revisited

Proposition 4.4

If the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}
$$

This follows from the following two observations:

$$
\begin{aligned}
& \operatorname{det}(t I-A)=\left|\begin{array}{cccccc}
t-a_{11} & -a_{12} & -a_{13} & \cdots & -a_{1(n-1)} & -a_{1 n} \\
-a_{21} & t-a_{22} & -a_{23} & \cdots & -a_{2(n-1)} & -a_{2 n} \\
-a_{31} & -a_{32} & t-a_{33} & \cdots & -a_{3(n-1)} & -a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-a_{(n-1) 1} & -a_{(n-1) 2} & -a_{(n-1) 3} & \cdots & t-a_{(n-1)(n-1)} & -a_{(n-1) n} \\
-a_{n 1} & -a_{n 2} & -a_{n 3} & \cdots & -a_{n(n-1)} & t-a_{n n}
\end{array}\right| \\
& \operatorname{det} M=\sum_{\pi \in S_{n}}^{\operatorname{sgn}(\pi) m_{\pi(1), 1} m_{\pi(2), 2} \cdots m_{\pi(n), n} .}
\end{aligned}
$$

Polynomials of matrices

Remark

If $A v=\lambda v$, then $A^{k} v=\lambda^{k} v$ for all $k \in \mathbb{N}$.

Actually, much more is true:

Spectral mapping theorem

If λ is an eigenvalue of A, then for any polynomial $q(t)$,
(a) $q(\lambda)$ is an eigenvalue of $q(A)$
(b) conversely, every eigenvalue of $q(A)$ has this form.

Corollary 4.5

Every eigenvalue of $p_{A}(A)$ is zero.

Actually, even much more is true:

Cayley-Hamilton theorem

Every matrix satisfies its characteristic polynomial. That is, $p_{A}(A)=0$.

Lemma 4.6 (exercise)

Let P and Q be polynomials with matrix coefficients:

$$
P(t)=P_{n} t^{n}+\cdots+P_{1} t+P_{0}, \quad Q(t)=Q_{m} t^{m}+\cdots+Q_{1} t+Q_{0} .
$$

Their product is a polynomial

$$
\begin{aligned}
R(t)=P(t) Q(t) & =\left(P_{n} t^{n}+\cdots+P_{1} t+P_{0}\right)\left(Q_{m} t^{m}+\cdots+Q_{1} t+Q_{0}\right) \\
& =R_{n+m} t^{n+m}+\cdots+R_{1} t+R_{0},
\end{aligned}
$$

where $R_{k}=\sum_{i+j=k} P_{i} Q_{j}$. Moreover, if A commutes with the Q_{i} 's, then $P(A) Q(A)=R(A)$.

We will apply this to the polynomial $Q(t)=t l-A$, and so $\operatorname{det} Q(t)=p_{A}(t)$.
Let $C_{j i}$ be the (j, i) cofactor of $Q(t)$. By Cramer's theorem, $\operatorname{det} Q(t) I=\left(C_{j i}\right) Q(t)$.
If we let $P(t)=\left(C_{j i}\right)$, then

$$
R(t):=P(t) Q(t)=\operatorname{det} Q(t) I=p_{A}(t) I
$$

Clearly, A commutes with the coefficients of $Q(t)$, and $Q(A)=0$, so

$$
R(A)=P(A) Q(A)=\operatorname{det} Q(A) I=p_{A}(A)=0
$$

The minimal polynomial

Throughout, $A: X \rightarrow X$ will be an $n \times n$ matrix over an algebraically closed field K.
Let I be the set of polynomials

$$
I=\{p(t) \in K[t] \mid p(A)=0\} .
$$

This is an ideal of $K[t]$ since it's closed under addition, subtraction, and multiplication.
Since $K[t]$ is a principal ideal domain (PID), I is generated by a single element.
That is, $I=\left\langle m_{A}(t)\right\rangle$, for some monic polynomial $m_{A}(t)$, called the minimal polynomial of A.
All polynomials $p(t)$ such that $p(A)=0$ are multiples of $m_{A}(t)$.
Let's verify existence and uniqueness of $m_{A}(t)$ without using ring theoretic ideas.

2×2 examples

Examples

1. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $A=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right]$

Remark

Every 2×2 matrix with $\operatorname{tr} A=2$ and $\operatorname{det} A=1$ has $\lambda=1$ as a double root of $p_{A}(t)$. These matrices form a 2-parameter family of $p_{A}(t)$, and only $A=I$ has two linearly independent eigenvectors.

3×3 examples

Suppose A is a 3×3 matrix and $p_{A}(t)=(t-1)^{3}$. Since $m_{A}(t)$ divides $p_{A}(t)$, there are three possibilities:

1. $m_{A}(t)=t-1$
2. $m_{A}(t)=(t-1)^{2}$
3. $m_{A}(t)=(t-1)^{3}$.

Generalized eigenvectors

Suppose λ is an eigenvalue with multiplicity m, but only one eigenvector, $v_{1} \in X$. Then

$$
(A-\lambda I) v_{1}=0, \quad \operatorname{dim} N_{A-\lambda I}=1, \quad \operatorname{rank}(A-\lambda I)=m-1 .
$$

Big idea

We can always find some $v_{2} \in X$ such that

$$
(A-\lambda I) v_{2}=v_{1}, \quad \Longrightarrow \quad(A-\lambda I)^{2} v_{2}=0
$$

Similarly, we can find $v_{3} \in X$ such that

$$
(A-\lambda I) v_{3}=v_{2}, \quad \Longrightarrow \quad(A-\lambda I)^{3} v_{3}=0, \quad \text { but } \quad(A-\lambda I)^{2} v_{3}=v_{1} \neq 0
$$

Definition

A vector $v \in X$ is a generalized eigenvector of A with eigenvalue λ if $(A-\lambda I)^{m} v=0$ for some $m \geq 1$. The "genuine" eigenvectors are when $m=1$.

2×2 examples, revisited

Examples

1. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $A=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right]$

Invariant subspaces and block diagonal matrices

Throughout, X is an n-dimensional vector space over an algebraically closed field K.

Definition

An invariant subspace of $A: X \rightarrow X$ is any $Y \leq X$ for which $A(Y) \subseteq Y$.

Suppose $X=Y \oplus Z$, both A-invariant.
If y_{1}, \ldots, y_{k} and z_{k+1}, \ldots, z_{n} are bases for Y and Z, then the matrix of A with respect to

$$
y_{1}, \ldots, y_{k}, z_{k+1}, \ldots, z_{n}
$$

is block-diagonal. It is easy to see how this extends to a sum of A-invariant subspaces,

$$
X=Y_{1} \oplus \cdots \oplus Y_{\ell}
$$

Suppose we have a collection v_{1}, \ldots, v_{m} of generalized eigenvectors:
$v_{m-1}=(A-\lambda I) v_{m}, \quad v_{m-2}=(A-\lambda I)^{2} v_{m}, \ldots, \quad v_{2}=(A-\lambda I)^{m-2} v_{m}, \quad v_{1}=(A-\lambda I)^{m-1} v_{m}$.
Notice that $Y=\operatorname{Span}\left(v_{1}, \ldots, v_{m}\right)$ is invariant under both $(A-\lambda I)$ and A.
Next, we will explore what happens when we have multiple genuine eigenvectors, and the invariant subspaces that arise.

Our 11×11 running example

Suppose $A: X \rightarrow X$ has characteristic polynomial $p_{A}(t)=(t-\lambda)^{11}$, and $\operatorname{dim} N_{A-\lambda I}=4$.
Here is one such possibility for the generalized eigenvectors:
$v_{5} \longmapsto \overrightarrow{A-\lambda I} v_{4} \stackrel{A-\lambda I}{\longmapsto} v_{3} \stackrel{A-\lambda I}{\longmapsto} v_{2} \stackrel{A-\lambda I}{\longmapsto} v_{1} \stackrel{A-\lambda I}{ } 0$

$$
w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{ } 0
$$

$$
y_{1} \stackrel{A-\lambda I}{\longrightarrow} 0
$$

What invariant subspaces do you see?
Let $N_{j}:=N_{(A-\lambda l)^{j}}$. Notice that

$$
\cdots \quad=N_{6}=N_{5} \supsetneq N_{4} \supsetneq N_{3} \supsetneq N_{2} \supsetneq N_{1} \supsetneq 0 .
$$

The anatomy of an eigenvalue

Key idea

For any $A: X \rightarrow X$, there is always a basis of generalized eigenvectors of A.

Definition \& preview

The algebraic multiplicity of λ is:

- the largest k such that $(t-\lambda)^{k}$ is a factor of $p_{A}(t)$
- the maximum number of linearly independent generalized λ-eigenvectors of A
- the number of diagonal entries of λ in the Jordan canonical form.

The geometric multiplicity of λ is:

- $\operatorname{dim} N_{A-\lambda I}$
- the maximum number of linearly independent genuine λ-eigenvectors of A

■ the number of Jordan blocks corresponding to λ.
The index of λ is:

- the smallest d such that $N_{d}=N_{d+1}$

■ the "length of the longest chain" of generalized eigenvectors

- the largest m such that $(t-\lambda)^{m}$ is a factor of $m_{A}(t)$
- the size of the largest Jordan block corresponding to λ.

A key technical lemma

Lemma 4.7 (HW exercise)

The map $A-\lambda I$ is a well-defined injective map on quotient spaces:

$$
A-\lambda I: N_{j+1} / N_{j} \longrightarrow N_{j} / N_{j-1}, \quad A-\lambda I: \bar{x} \longmapsto \overline{(A-\lambda I) x} .
$$

Therefore, $\operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right)$.

$$
v_{5} \longmapsto \overrightarrow{A-\lambda I} \longrightarrow v_{4} \longmapsto A-\lambda I \quad v_{3} \longmapsto A-\lambda I \quad v_{2} \longmapsto A-\lambda I \quad v_{1} \longmapsto A-\lambda I \quad 0
$$

$$
w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

$$
x_{2} \longmapsto \xrightarrow{A-\lambda I} x_{1} \stackrel{A-\lambda I}{ } 0
$$

$$
\cdots=N_{6}=N_{5} \supsetneq N_{4} \supsetneq N_{3} \supsetneq N_{2} \supsetneq N_{1} \supsetneq 0
$$

The idea of the spectral theorem

Throughout, assume K is algebraically closed, and $\operatorname{dim} X=n$. A generalized eigenvector of A is any $v \in X$ such that $(A-\lambda I)^{m} v=0$ for some $m \geq 1$.

Spectral theorem

Let $A: X \rightarrow X$ be linear. Then X has a basis of generalized eigenvectors of A.

Recall our running example, a linear map with $p_{A}(t)=(t-\lambda)^{11}$, and $\operatorname{dim} N_{A-\lambda I}=4$:

$$
w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{ } 0
$$

$$
x_{2} \stackrel{A-\lambda I}{\longmapsto} x_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

$$
y_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

If $N_{j}:=N_{(A-\lambda /)^{j}}$, then

$$
\cdots=N_{6}=N_{5} \supsetneq N_{4} \supsetneq N_{3} \supsetneq N_{2} \supsetneq N_{1} \supsetneq 0 .
$$

Supporting lemmas

Lemma 4.8

Let $p, q \in K[t]$ be co-prime. Then we can write $a p+b q=1$ for some $a, b \in K[t]$.

Lemma 4.9

Let $A: X \rightarrow X$, and $p, q \in K[t]$ be co-prime. If $N_{p}, N_{q}, N_{p q}$ are the nullspaces of $p(A)$, $q(A)$, and $p(A) q(A)$, then

$$
N_{p q}=N_{p} \oplus N_{q} .
$$

Corollary 4.10

If $p_{1}, \ldots, p_{k} \in K[t]$ are pairwise co-prime, and $N_{p_{1} \cdots p_{k}}$ is the nullspace of $p_{1}(A) \cdots p_{k}(A)$, then

$$
N_{p_{1} \cdots p_{k}}=N_{p_{1}} \oplus \cdots \oplus N_{p_{k}} .
$$

Generalized eigenspaces

Definition

Let λ be an eigenvalue of $A: X \rightarrow X$ with index $d_{\lambda}=\operatorname{index}(\lambda)$. The generalized eigenspace of λ is

$$
E_{\lambda}:=N_{(A-\lambda l)^{d} \lambda}=\bigcup_{j=1}^{\infty} N_{(A-\lambda l)^{j}}
$$

Spectral theorem (stronger)
Let $A: X \rightarrow X$ be linear, with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then

$$
X=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}} .
$$

Goals

Assume K is algebraically closed, and $\operatorname{dim} X=n$. Last time, we proved the following:

Spectral theorem

Let $A: X \rightarrow X$ be linear. Then

$$
X=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}},
$$

where $E_{\lambda_{j}}=\bigcup_{m=1}^{\infty} N_{\left(A-\lambda_{j} l\right)^{m}}$ is the generalized eigenspace of λ_{j}.

We motivated it with a running example, a map with $p_{A}(t)=(t-\lambda)^{11}$, and $\operatorname{dim} N_{A-\lambda I}=4$:

However, we haven't actually proven that the generalized eigenvectors have this structure. Now, we will show how to explicitly construct such a basis.

We'll also see why the generalized eigenspace structure determines the similarity class of A.

Generalized eigenspaces characterize similarity

Let $A: X \rightarrow X$ have eigenvalue λ of degree d_{λ}. For each $m=1,2, \ldots$, define

$$
N_{m}(\lambda)=N_{(A-\lambda l)^{m}}, \quad \text { and note that } \quad E_{\lambda}=\bigcup_{m=1}^{\infty} N_{m}(\lambda) .
$$

It turns out that A (up to a choice of basis) is completely determined by the dimensions of these "eigen-subspaces" $N_{1}(\lambda), \ldots, N_{d_{\lambda}}(\lambda)$, for each λ.

For another $B: X \rightarrow X$ with eigenvalue λ, denote its eigen-subspaces by $M_{m}(\lambda)=N_{(B-\lambda l)^{m}}$.

Theorem 4.11

The linear maps A and B are similar if and only if for each eigenvalue λ,

$$
\operatorname{dim} N_{m}(\lambda)=\operatorname{dim} M_{m}(\lambda), \quad \text { for all } m=1,2, \ldots
$$

The " \Rightarrow " implication is easy. Let $A=P B P^{-1}$.
Then $(A-\lambda I)^{m}=P(B-\lambda I)^{m} P^{-1}$, and similar maps have the same nullity.
For the " \Leftarrow " implication, we need to construct a basis for E_{λ} under which $A-\lambda I$ (and hence $B-\lambda I$) admits a nice matrix form.

This is the Jordan canonical form.

Basis construction (algebraic description)

Lemma 4.7 (HW)

The map $A-\lambda /$ is a well-defined injective map on quotient spaces, i.e.,

$$
A-\lambda I: N_{j+1} / N_{j} \longleftrightarrow N_{j} / N_{j-1}, \quad A-\lambda I: \bar{x} \longmapsto \overline{(A-\lambda I) x}
$$

Therefore, $\operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right)$.

We will construct our basis in batches, from "left-to-right", starting with $N_{d}=E_{\lambda}$.
Let $\bar{x}_{1}, \ldots, \bar{x}_{\ell_{0}}$ be a basis for N_{d} / N_{d-1}.
Apply $A-\lambda I$, to get $(A-\lambda I) \bar{x}_{j} \mapsto \bar{x}_{j}^{\prime}$.
The vectors $\bar{x}_{1}^{\prime}, \ldots, \bar{x}_{\ell_{0}}^{\prime}$ are linearly independent in N_{d-1} / N_{d-2}. Extend to a basis $\bar{x}_{1}^{\prime}, \ldots, \bar{x}_{\ell_{1}}^{\prime}$.
Apply $A-\lambda I$, to get $(A-\lambda I) \bar{x}_{j}^{\prime} \mapsto \bar{x}_{j}^{\prime \prime}$.
The vectors $\bar{x}_{1}^{\prime \prime}, \ldots, \bar{x}_{\ell_{1}}^{\prime \prime}$ are linearly independent in N_{d-2} / N_{d-3}. Extend to a basis $\bar{x}_{1}^{\prime \prime}, \ldots, \bar{x}_{\ell_{2}}^{\prime \prime}$.
Repeat this process, until we reach the genuine eigenvectors. The collection of representatives we've constructed is a basis for E_{λ}.

Basis construction (visualization)

Key points

$$
A-\lambda I: N_{j+1} / N_{j} \hookrightarrow N_{j} / N_{j-1} \quad \Longrightarrow \quad \operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right) .
$$

Jordan blocks

Spectral theorem

Let $A: X \rightarrow X$ be linear. Then

$$
X=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}},
$$

where $E_{\lambda_{j}}=\bigcup_{m=1}^{\infty} N_{\left(A-\lambda_{j} l\right)^{m}}$ is the generalized eigenspace of λ_{j}.

Moreover, each $E_{\lambda_{j}}$ is a direct sum of subspaces invariant under both A and $\left(A-\lambda_{j} I\right)$.
Let's recall an old example where λ has algebraic multiplicity $\operatorname{dim} E_{\lambda}=11$ and geometric multiplicity $\operatorname{dim} N_{A-\lambda I}=4$.

The matrix of A with respect to this is block-diagonal, consisting of Jordan blocks.

Jordan canonical form

A Jordan block is a matrix of the form

$$
J_{\lambda}=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right]
$$

Every matrix A is similar to a Jordan matrix - a block-diagonal matrix of Jordan blocks:

$$
J=\left[\begin{array}{lllllll}
J_{\lambda_{1}, 1} & & & & & & \\
& \ddots & & & & & \\
& & J_{\lambda_{1}, n_{1}} & & & & \\
& & & \ddots & & & \\
& & & & J_{\lambda_{k}, 1} & & \\
& & & & & \ddots & \\
& & & & & & J_{\lambda_{k}, n_{k}}
\end{array}\right]
$$

This is called the Jordan normal form, or Jordan canonical form (JCF) of A.

Summary of key spectral concepts

Two linear maps $A, B: X \rightarrow X$ are similar iff they have the same Jordan canonical form.
For each eigenvalue λ, the algebraic multiplicity of λ is the:

- degree of $(t-\lambda)$ in $p_{A}(t)$
- maximum number of linearly independent generalized λ-eigenvectors of A
- number of diagonal entries of λ in the Jordan canonical form.

The geometric multiplicity of λ is the:

- $\operatorname{dim} N_{A-\lambda I}$
- maximum number of linearly independent genuine λ-eigenvectors of A
- number of Jordan blocks corresponding to λ.

The index of λ is the:

- smallest d such that $N_{d}=N_{d+1}$ (length of the largest "chain")
- degree of $(t-\lambda)$ in $m_{A}(t)$
- size of the largest Jordan block corresponding to λ.
A is diagonalizable if:
- X has a basis of genuine eigenvectors
- $m_{A}(t)$ has no repeated roots
- the Jordan canonical form is a diagonal matrix.

Commuting maps

Lemma 4.12

Let $A, B: X \rightarrow X$ be commuting linear maps, and $E_{\lambda}=\bigcup_{j=1}^{\infty} N_{(A-\lambda I)^{j}}$, the generalized λ-eigenspace of A. Then E_{λ} is B-invariant.

Theorem 4.13

Let $A, B: X \rightarrow X$ be commuting linear maps. There is a basis for X consisting of generalized eigenvectors of A and B.

Corollary 4.14

Let $A, B: X \rightarrow X$ be commuting diagonalizable linear maps. Then they are simultaneously diagonalizable. That is, for some invertible $P: X \rightarrow X$,

$$
A=P D_{A} P^{-1} \quad \text { and } \quad B=P D_{B} P^{-1} .
$$

Application: ODEs with repeated roots

Recall how to solve the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$:

- Look for a solution of the form $y(t)=e^{r t}$.
- Plug back in to get $e^{r t}\left(r^{2}-3 r+2\right)=0$, and so $r=1$ or $r=2$.
- The general solution is thus $y(t)=C_{1} e^{t}+C_{2} e^{2 t}$.

A "problem case" occurs when the "characteristic equation" has repeated roots.
For example, consider $y^{\prime \prime}-2 \lambda y^{\prime}+\lambda^{2} y=0$.
The same process gives $r_{1}=r_{2}=\lambda$, so we only get one solution, $y_{1}(t)=e^{\lambda t}$.
However, the solution space is two-dimensional. It turns out that $y_{2}(t)=t e^{\lambda t}$ is also a solution.

Now, we'll see how this arises as a generalized eigenfunction of a differential operator.

The derivative operator

Clearly, $y_{1}(t)=e^{\lambda t}$ is an eigenfunction of $D=\frac{d}{d t}$.
Equivalently, it is in $N_{D-\lambda /}$, and solves the ODE

$$
(D-\lambda I) y=0 \quad \Leftrightarrow \quad\left(\frac{d}{d t}-\lambda\right) y=0 \quad \Leftrightarrow \quad y^{\prime}-\lambda y=0 .
$$

Generalized eigenfunctions in $N_{(D-\lambda /)^{2}}$ are solutions to the second order ODE

$$
(D-\lambda I)^{2} y=0, \quad \Leftrightarrow \quad\left(\frac{d}{d t}-\lambda\right)^{2} y=0, \quad \Leftrightarrow \quad y^{\prime \prime}-2 \lambda y^{\prime}+\lambda^{2} y=0
$$

It is easy to see that $y_{2}(t)=t e^{\lambda t}$ is in $N_{(D-\lambda /)^{2}}$, because

$$
D\left(y_{2}\right)=D\left(t e^{\lambda t}\right)=e^{\lambda t}+\lambda t e^{\lambda t}=y_{1}+\lambda y_{2} .
$$

Similarly, $y_{3}(t)=\frac{1}{2!} t^{2} e^{\lambda t}$ is in $N_{(D-\lambda /)^{3}}$, because

$$
D\left(y_{3}\right)=D\left(\frac{1}{2!} t^{2} e^{\lambda t}\right)=t e^{\lambda t}+\lambda \frac{1}{2!} t^{2} e^{\lambda t}=y_{2}+\lambda y_{3} .
$$

Repeating in this manner, we see that the generalized eigevectors for D are:

$$
\cdots \xrightarrow{D-\lambda l} \frac{1}{4!} t^{4} e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} \frac{1}{3!} t^{3} e^{\lambda t} \xrightarrow{D-\lambda I} \frac{1}{2!} t^{2} e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} t e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} 0
$$

The generalized eigenspace of D for eigenvalue λ is thus

$$
E_{\lambda}=\left\{p(t) e^{\lambda t} \mid p \in K[t]\right\}
$$

Systems of linear differential equations

Consider the linear system $x^{\prime}=A x$:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

It is easy to check that if $A v=\lambda v$, then $x(t)=e^{\lambda t} v$ is a solution.
Thus, the general solution is

$$
x(t)=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
C_{1} e^{3 t}+C_{2} e^{-t} \\
2 C_{1} e^{3 t}-2 C_{2} e^{-t}
\end{array}\right] .
$$

Now, consider an example that has only one eigenvector:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \quad x_{1}(t)=e^{\lambda t} v_{1}=e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

In an ODE course, one is taught to look for a solution of the form

$$
x_{2}(t)=t e^{-2 t} v+e^{-2 t} w
$$

and solve for v and w.
We'll see that what we're really doing is finding generalized eigenvectors of A.

Solving $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with repeated eigenvalues

Suppose that $A v=\lambda v$, and so $x_{1}(t)=e^{\lambda t} v$ is a solution. Consider

$$
x_{2}(t)=t e^{\lambda t} v+e^{\lambda t} w,
$$

and plug this back into $x^{\prime}=A x$:

- $A x_{2}=t e^{\lambda t} A v+e^{\lambda t} A w$.
- $x_{2}^{\prime}=\left(e^{\lambda t} v+\lambda t e^{\lambda t} v\right)+\lambda e^{\lambda t} w$.

Equate like terms and divide by $e^{\lambda t}$:

- $t e^{\lambda t}: \quad A v=\lambda v$
- $e^{\lambda t}: \quad A w=v+\lambda w$.

In other words, $v=v_{1}$ is the eigenvector, and $w=v_{2}$ a generalized eigenvector. The general solution is

$$
x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)=C_{1} e^{\lambda t} v_{1}+C_{2} e^{\lambda t}\left(t v_{1}+v_{2}\right) .
$$

In summary, if the generalized eigenvectors of A are

$$
v_{2} \stackrel{A-\lambda I}{\longmapsto} v_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

then the generalized eigenvectors of $A-\frac{d}{d t}$ are

$$
\cdots \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t}\left(\frac{t^{2}}{2!} v_{1}+t v_{2}+v_{3}\right) \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t}\left(t v_{1}+v_{2}\right) \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t} v_{1} \stackrel{A-\frac{d}{d t}}{\longmapsto} 0
$$

A Jordan matrix perspective

Formally, suppose we have the system $x^{\prime}=A x$, and $A=P J P^{-1}$.

$$
\left(P^{-1} x\right)^{\prime}=J\left(P^{-1} x\right), \quad \text { let } z=P^{-1} x \quad \Leftrightarrow \quad x=P z
$$

Now, we just have to analyze $z^{\prime}=J z$ for a Jordan matrix.
The solution is

$$
z=e^{\lambda t}\left[\begin{array}{cccccc}
1 & t & \frac{t^{2}}{2!} & \frac{t^{3}}{3!} & \cdots & \frac{t^{k-1}}{(k-1)!} \\
& 1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{k-2}}{(k-2)!} \\
& & 1 & t & \cdots & \frac{t^{k-3}}{(k-3)!} \\
& & & \ddots & \ddots & \vdots \\
& & & & 1 & t \\
& & & & & 1
\end{array}\right]\left[\begin{array}{c}
C_{1} \\
C_{2} \\
C_{3} \\
\vdots \\
C_{n-1} \\
C_{n}
\end{array}\right]=e^{J t} c
$$

It is easy to extend this to one where J has multiple Jordan blocks.

Finishing our example

Let's return to our example of $x^{\prime}=A x$, with only one eigenvector:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad x_{1}(t)=e^{\lambda t} v_{1}=e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

The Jordan canonical form $A=P J P^{-1}$ is

$$
\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

The solution is $x=P z$, where $z=e^{\lambda t} e^{J t} c$:

$$
x(t)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] e^{-2 t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=e^{-2 t}\left[\begin{array}{cc}
1 & t+1 \\
1 & t
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
C_{1} e^{-2 t}+C_{2} e^{-2 t}(t+1) \\
C_{1} e^{-2 t}+C_{2} t e^{-2 t}
\end{array}\right]
$$

Notice that we can rearrange terms to get this into a familiar form:

$$
x(t)=C_{1} e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{-2 t}\left(t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=C_{1} e^{-2 t} v_{1}+C_{2} e^{-2 t}\left(t v_{1}+v_{2}\right)
$$

In other words, the generalized eigenvectors are:

$$
e^{-2 t}\left(t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \stackrel{A-\frac{d}{d t}}{\longrightarrow} e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{A-\frac{d}{d t}}{\longmapsto}\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

