Section 7: Positive linear maps

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Basic concepts, and relation to eigenvalues

Definition

A self-adjoint map $M: X \rightarrow X$ is positive-definite (or positive) if

$$
(x, M x)>0, \quad \text { for all } x \neq 0
$$

and positive semi-definite (or nonnegative) if

$$
(x, M x) \geq 0, \quad \text { for all } x \neq 0
$$

We denote these as $M>0$ and $M \geq 0$, respectively.

Proposition 7.1

A self-adjoint map $M: X \rightarrow X$ is
(i) positive if and only if all eigenvalues of M are positive,
(ii) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.
A matrix that is none of these is said to be indefinite.

Basic properties of positive maps

Proposition 7.2

Let X be an inner product space, and $M, N, Q \in \operatorname{Hom}(X, X)$.
(i) If $M, N>0$, then $M+N>0$ and $a M>0$ for $a>0$.
(ii) If $M>0$ and Q invertible, then $Q^{*} M Q>0$.
(iii) Every positive map has a unique positive square root.

The topology of positive maps

In an inner product space, the ball of radius $r>0$ centered at $x \in X$ is

$$
B_{r}(x)=\{y \in X:\|x-y\|<r\} .
$$

Let $U \subseteq X$ be a subset. Then

- a point $u \in U$ is interior if there is some $\epsilon>0$ for which $B_{\epsilon}(u) \subseteq U$,
- the set U is open if every $u \in U$ is interior,
- its closure consists of U and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X.
(i) The subset of positive maps is open.
(ii) The closure of this set are the non-negative maps.

The matrix $A^{T} A$

Consider an $n \times m$ matrix A over \mathbb{R}, where

$$
A=\left[\begin{array}{lll}
x_{1} & \cdots & x_{m}
\end{array}\right] .
$$

The $m \times m$ matrix $A^{T} A$ is self-adjoint:

$$
A^{T} A=\left[\begin{array}{cccc}
x_{1}^{T} x_{1} & x_{1}^{T} x_{2} & \cdots & x_{1}^{T} x_{m} \\
x_{2}^{T} x_{1} & x_{2}^{T} x_{2} & \cdots & x_{2}^{T} x_{m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m}^{T} x_{1} & x_{m}^{T} x_{2} & \cdots & x_{m}^{T} x_{m}
\end{array}\right] \text {. }
$$

Note that $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $A^{T} A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. We've already seen that:

1. rank $A=\operatorname{rank} A^{T} A$ and nullity $A=$ nullity $A^{T} A \quad$ (in fact, $N_{A}=N_{A^{T} A}$),
2. $A^{T} A \geq 0$, and $A^{T} A>0$ if x_{1}, \ldots, x_{m} are linearly independent,
3. If $N_{A}=0$, then the projection matrix onto $\operatorname{Span}\left(x_{1}, \ldots, x_{m}\right)$ is $A\left(A^{T} A\right)^{-1} A^{T}$.

Later, we'll diagonalize $A^{T} A$ to get the celebrated singular value decomposition of A.

Gram matrices

Now, we'll generalize the construction of $A^{T} A$, the "matrix of dot products."
We'll see that every positive matrix is a "matrix of inner products."

Definition

Let $x_{1}, \ldots, x_{m} \in X$, with inner product $($,$) . The Gram matrix of these vectors is$

$$
G=\left(G_{i j}\right), \quad \text { where } \quad G_{i, j}=\left(x_{i}, x_{j}\right) .
$$

Notice that $G=A^{*} A$, where $A=\left[\begin{array}{lll}x_{1} & \cdots & x_{m}\end{array}\right]$.

Theorem 7.6

1. Every Gram matrix is nonnegative.
2. The Gram matrix of a set of linearly independent vectors is positive.
3. Every positive matrix is a Gram matrix.

Other examples of Gram matrices

1. Let $X=\{f:[0,1] \rightarrow \mathbb{R}\}$, where $(f, g)=\int_{0}^{1} f(t) g(t) d t$. If

$$
f_{1}=1, \quad f_{2}=t, \quad \ldots, \quad f_{m}=t^{m-1}
$$

then the Gram matrix is $G=\left(G_{i j}\right)$, where

$$
G_{i j}=\frac{1}{i+j-1} .
$$

2. Consider $X=\{f:[0,2 \pi] \rightarrow \mathbb{C}\}$ and a "weighting function" $w:[0,2 \pi] \rightarrow \mathbb{R}^{+}$, define

$$
(f, g)=\int_{0}^{2 \pi} f(\theta) \overline{g(\theta)} w(\theta) d \theta
$$

If $f_{j}=e^{i j \theta}$, for $j=-n, \ldots, n$, then the $(2 n+1) \times(2 n+1)$ Gram matrix is $G=\left(G_{k j}\right)=\left(c_{k-j}\right)$, where

$$
c_{\omega}=\int_{0}^{2 \pi} w(\theta) e^{-i \omega \theta} d \theta
$$

New inner products from old

Let X be a vector space with inner product (\cdot, \cdot).
A positive map $M>0$ defines a nonstandard inner product $\langle\cdot, \cdot\rangle$, where

$$
\langle x, y\rangle:=(x, M y)
$$

Lemma 7.7 (HW)

If $H, M: X \rightarrow X$ are self-adjoint and $M>0$, then $M^{-1} H$ is self-adjoint with respect to the inner product $\langle x, y\rangle=(x, M y)$.

Definition

If $H, M: X \rightarrow X$ are self-adjoint and $M>0$, the generalized Rayleigh quotient is

$$
R_{H, M}(x)=\frac{(x, H x)}{(x, M x)}=\frac{\left(x, M M^{-1} H x\right)}{(x, M x)}=\frac{\left\langle x, M^{-1} H x\right\rangle}{\langle x, x\rangle}:=R_{M^{-1} H}\langle x\rangle \quad \text { w.r.t. }\langle,\rangle .
$$

Note that:

- the ordinary Rayleigh quotient is simply $R_{H}=R_{H, I}$.
- the generalized Rayleigh quotient is an ordinary Rayley quotient.

The generalized Rayleigh quotient

Key remark

Results on the generalized Rayleigh quotient $R_{H, M}(x)$ follow from interpreting results of the ordinary Rayleigh quotient to

$$
R_{M^{-1} H}\langle x\rangle:=\frac{\left\langle x, M^{-1} H x\right\rangle}{\langle x, x\rangle}=\frac{(x, H x)}{(x, M x)}=R_{H, M}(x) .
$$

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H :

$$
R_{H}\left(v_{1}\right)=\lambda_{1}, \quad \text { where } H v_{1}=\lambda_{1} v_{1} .
$$

The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of $M^{-1} \mathrm{H}$:

$$
R_{H, M}\left(v_{1}\right)=R_{M^{-1} H}\left\langle w_{1}\right\rangle=\mu_{1}, \quad \text { where } M^{-1} H w_{1}=\mu_{1} w_{1} .
$$

Now, w.r.t. the inner product \langle,\rangle , let

$$
X_{1}:=\operatorname{Span}\left(v_{1}\right)^{\perp}, \quad \text { and so } \quad X=X_{1} \oplus \operatorname{Span}\left(v_{1}\right), \quad \operatorname{dim} X_{1}=n-1
$$

The minimum value of the generalized Rayleigh quotient on X_{1} is

$$
\mu_{2}=\min _{\|x\|=1}\left\{R_{M^{-1} H}\langle x\rangle \mid\left\langle x, v_{1}\right\rangle=0\right\}=\min _{\|x \mid\|=1}\left\{R_{H, M}(x) \mid\left(x, M v_{1}\right)=0\right\}
$$

where $M^{-1} H w_{2}=\mu_{2} w_{2}$, and μ_{2} is the 2 nd smallest eigenvalue of $M^{-1} H$.

The min-max principle for the generalized Rayleigh quotient

Theorem 6.10 (recall)

Let $H: X \rightarrow X$ be self-adjoint with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then

$$
\lambda_{k}=\min _{\operatorname{dim} S=k}\left\{\max _{x \in S \backslash 0} R_{H}(x)\right\} .
$$

Proposition 7.8 (HW)

Let $H, M: X \rightarrow X$ be self-adjoint and $M>0$.

1. Show that there exists a basis v_{1}, \ldots, v_{n} of X where each v_{i} satisfies

$$
H v_{i}=\mu_{i} M v_{i} \quad\left(\mu_{i} \text { real }\right), \quad\left(v_{i}, M v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

2. Compute $\left(v_{i}, H v_{j}\right)$, and show that there is an invertible matrix U for which $U^{*} M U=I$ and $U^{*} H U$ is diagonal.
3. Characterize the numbers $\mu_{1}, \ldots \mu_{n}$ by a minimax principle.

The Hadamard product of matrices

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be matrices of the same size. The Hadamard product of A and B is defined as

$$
A \circ B:=\left(a_{i j} b_{i j}\right) .
$$

Schur's product theorem
If $A, B>0$, then so is $A \circ B$.

The idea of the polar decomposition

Every nonzero complex number $z \in \mathbb{C}$ has a unique polar form

$$
z=r e^{i \theta}=|z| e^{i \theta}, \quad r \in \mathbb{R}^{+}, \quad \theta \in[0,2 \pi) .
$$

This can be thought of as decomposing $z \in \mathbb{C}$ into:

- a rotation by θ,
- a scaling by $|z|=r=\sqrt{\bar{z} z}$.

This is simply the polar decomposition of a 1×1 matrix.
Every linear map $A \in \operatorname{Hom}(X, X)$ can be decomposed as $A=U P$, where

- U is unitary; i.e., an isometry of X,
- $P \geq 0$; a scaling along an orthonormal axis u_{1}, \ldots, u_{n}.

It turns out that $P=\sqrt{A^{*} A}:=|A|$, and so sometimes this is written $A=U|A|$.
In this lecture, we will derive the polar decomposition of a linear map

$$
A: X \longrightarrow U, \quad \operatorname{dim} X=m, \quad \operatorname{dim} U=n .
$$

In the next lecture, we will derive the celebrated singular value decomposition (SVD).

Singular values

Key properties (Propositions 7.2, 7.6)

- $A^{*} A \geq 0$;
- Every $P \geq 0$ has a unique nonnegative square root $R:=\sqrt{P}$, such that $R^{2}=P$.

This means that for some $\lambda_{1}, \ldots, \lambda_{m} \geq 0$,

$$
A^{*} A=W\left[\begin{array}{lll}
\lambda_{1}^{2} & & \\
& \ddots & \\
& & \lambda_{m}^{2}
\end{array}\right] W^{*}, \quad \text { and } \quad \sqrt{A^{*} A}=W\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right] W^{*} .
$$

Definition

The eigenvalues of $\lambda_{1}, \ldots, \lambda_{m}$ of $\sqrt{A^{*} A}$ are called the singular values of A.

Facts (that we've seen)

- $\|A x\|=\left\|\sqrt{A^{*} A} x\right\|$ for all $x \in X$.
- $A, A^{*} A$, and $\sqrt{A^{*} A}$ have the same nullspace.
- $A, A^{*} A$, and $\sqrt{A^{*} A}$ have the same rank.

Polar decomposition of an invertible map

Theorem

Every linear map $A: X \rightarrow X$ can be written as $A=U P$ where $P \geq 0$ and U is unitary. This is called the (left) polar decomposition of A.

To construct the polar decomposition, suppose $A=U P$.
Since $P \geq 0$, we can write $P=Q D Q^{*}$, and so

$$
P^{*} P=\left(Q D Q^{*}\right)^{*}\left(Q D Q^{*}\right)=\left(Q D^{*} Q^{*}\right) Q D Q^{*}=Q D^{2} Q^{*}=P^{2} .
$$

Now, notice that

$$
A^{*} A=(U P)^{*}(U P)=P^{*} U^{*} U P=P^{*} P=P^{2} .
$$

Therefore, $P=\sqrt{A^{*} A}$.
If A is invertible, then $U=A P^{-1}=A{\sqrt{A^{*} A}}^{-1}$ is uniquely determined.
In this case,

$$
A=U P=\left(A{\sqrt{A^{*} A}}^{-1}\right) \sqrt{A^{*} A} .
$$

If A is not invertible, then U still exists, but is not unique.

Polar decomposition of a general linear map

Theorem

Every linear map $A: X \rightarrow X$ can be written as $A=U P$ where $P \geq 0$ and U is unitary. This is called the polar decomposition of A.

Suppose the eigenvalues of $\sqrt{A^{*} A}$ are

$$
\lambda_{1} \geq \cdots \geq \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{m}=0
$$

and pick a set x_{1}, \ldots, x_{m} of orthonormal eigenvectors. Then

$$
\frac{1}{\lambda_{1}} A x_{1}, \ldots, \frac{1}{\lambda_{r}} A x_{r}, x_{r+1}, \ldots, x_{m}
$$

is orthonormal. The polar decomposition is $A=U P$ where $P=\sqrt{A^{*} A}$ and

$$
U=\left[\begin{array}{ccccc}
\mid & & \mid & \mid & \\
\frac{1}{\lambda_{1}} A x_{1} & \cdots & \frac{1}{\lambda_{r}} A x_{r} & x_{r+1} & \cdots \\
\mid & & \mid & \mid & \\
x_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & x_{1}^{H} & - \\
& \vdots & \\
- & x_{m}^{H} & -
\end{array}\right] .
$$

Remark

If $A: X \rightarrow X$ and $r:=\operatorname{det} P=|\operatorname{det} A|$, then

$$
\operatorname{det} A=\operatorname{det} U \operatorname{det} P=e^{i \theta} \cdot r .
$$

Singular value decomposition

Need to do...

Partially ordered sets

Recall that a partial order on a set X is a relation \leq that is:
(i) reflexive: $x \leq x$
(ii) anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x=y$
(iii) transitive: $x \leq y \leq z \Rightarrow x \leq z$.

We say that $x<y$ if $x \leq y$ and $x \neq y$. The pair (X, \leq) is a partially ordered set (poset).
Alternatively, we can define a partial order by a relation $<$ that is
(i) reflexive: $x \not \leq x$
(ii) anti-symmetric: $x<y \Rightarrow y \nless x$
(iii) transitive: $x<y<z \Rightarrow x<z$.

Definition

Put a following partial order on the set of self-adjoint maps:

$$
M<N \quad \text { iff } \quad N-M>0, \quad M \leq N \quad \text { iff } \quad N-M \geq 0 .
$$

Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:
(i) If $m_{1}<n_{1}$ and $m_{2}<n_{2}$, then $m_{1}+m_{2}<n_{1}+n_{2}$.
(ii) If $\ell<m<n$, then $\ell<n$.
(iii) If $m<n$ and $a>0$, then $a m<a n$
(iv) If $0<m<n$, then $1 / m>1 / n>0$.

Proposition 7.9

The following all hold for linear maps on X :
(i) If $M_{1}<N_{1}$ and $M_{2}<N_{2}$, then $M_{1}+M_{2}<N_{1}+N_{2}$.
(ii) If $L<M<N$, then $L<N$.
(iii) Given maps $M<N$ and a scalar $a>0$, we have $a M<a N$.
(iv) If $0<M<N$, then $M^{-1}>N^{-1}>0$.

The symmetrized product

Definition

If $A, B: X \rightarrow X$ are self-adjoint, their symmetrized product is

$$
S=A B+B A .
$$

Proposition 7.10
Let A, B be self-adjoint. If $A>0$ and $A B+B A>0$, then $B>0$.

