Section 7: Positive linear maps

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Basic concepts, and relation to eigenvalues

Definition

A self-adjoint map $M: X \to X$ is positive-definite (or positive) if

(x, Mx) > 0, for all $x \neq 0,$

and positive semi-definite (or nonnegative) if

 $(x, Mx) \ge 0,$ for all $x \ne 0,$

We denote these as M > 0 and $M \ge 0$, respectively.

Proposition 7.1

A self-adjoint map $M: X \to X$ is

(i) positive if and only if all eigenvalues of M are positive,

(ii) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.

A matrix that is none of these is said to be indefinite.

Basic properties of positive maps

Proposition 7.2

- Let X be an inner product space, and $M, N, Q \in Hom(X, X)$.
 - (i) If M, N > 0, then M + N > 0 and aM > 0 for a > 0.
 - (ii) If M > 0 and Q invertible, then $Q^*MQ > 0$.
- (iii) Every positive map has a unique positive square root.

The topology of positive maps

In an inner product space, the ball of radius r > 0 centered at $x \in X$ is

$$B_r(x) = \{y \in X : ||x - y|| < r\}.$$

Let $U \subseteq X$ be a subset. Then

- a point $u \in U$ is interior if there is some $\epsilon > 0$ for which $B_{\epsilon}(u) \subseteq U$,
- the set U is open if every $u \in U$ is interior,
- its closure consists of *U* and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X.

- (i) The subset of positive maps is open.
- (ii) The closure of this set are the non-negative maps.

The matrix $A^T A$

Consider an $n \times m$ matrix A over \mathbb{R} , where

$$A=\begin{bmatrix} x_1 \cdots x_m\end{bmatrix}.$$

The $m \times m$ matrix $A^T A$ is self-adjoint:

$$A^{T}A = \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{m} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}^{T}x_{1} & x_{m}^{T}x_{2} & \cdots & x_{m}^{T}x_{m} \end{bmatrix}$$

Note that $A: \mathbb{R}^m \to \mathbb{R}^n$ and $A^T A: \mathbb{R}^m \to \mathbb{R}^m$. We've already seen that:

- 1. rank $A = \operatorname{rank} A^T A$ and nullity $A = \operatorname{nullity} A^T A$ (in fact, $N_A = N_{A^T A}$),
- 2. $A^T A \ge 0$, and $A^T A > 0$ if x_1, \ldots, x_m are linearly independent,
- 3. If $N_A = 0$, then the projection matrix onto $\text{Span}(x_1, \dots, x_m)$ is $A(A^T A)^{-1} A^T$.

Later, we'll diagonalize $A^T A$ to get the celebrated singular value decomposition of A.

Gram matrices

Now, we'll generalize the construction of $A^T A$, the "matrix of dot products."

We'll see that every positive matrix is a "matrix of inner products."

Definition

Let $x_1, \ldots, x_m \in X$, with inner product (,). The Gram matrix of these vectors is

 $G = (G_{ij}),$ where $G_{i,j} = (x_i, x_j).$

Notice that $G = A^*A$, where $A = [x_1 \cdots x_m]$.

Theorem 7.6

- 1. Every Gram matrix is nonnegative.
- 2. The Gram matrix of a set of linearly independent vectors is positive.
- 3. Every positive matrix is a Gram matrix.

Other examples of Gram matrices

1. Let
$$X = \{f : [0,1] \to \mathbb{R}\}$$
, where $(f,g) = \int_0^1 f(t)g(t) dt$. If $f_1 = 1, \quad f_2 = t, \quad \dots, \quad f_m = t^{m-1},$

then the Gram matrix is $G = (G_{ij})$, where

$$G_{ij}=rac{1}{i+j-1}.$$

2. Consider $X = \{f : [0, 2\pi] \to \mathbb{C}\}$ and a "weighting function" $w : [0, 2\pi] \to \mathbb{R}^+$, define

$$(f,g) = \int_0^{2\pi} f(\theta) \overline{g(\theta)} w(\theta) d\theta.$$

If $f_j = e^{ij\theta}$, for $j = -n, \ldots, n$, then the $(2n + 1) \times (2n + 1)$ Gram matrix is $G = (G_{kj}) = (c_{k-j})$, where

$$c_\omega = \int_0^{2\pi} w(heta) e^{-i\omega heta} d heta.$$

New inner products from old

Let X be a vector space with inner product (\cdot, \cdot) .

A positive map M > 0 defines a nonstandard inner product $\langle \cdot, \cdot \rangle$, where

 $\langle x, y \rangle := (x, My).$

Lemma 7.7 (HW)

If $H, M: X \to X$ are self-adjoint and M > 0, then $M^{-1}H$ is self-adjoint with respect to the inner product $\langle x, y \rangle = (x, My)$.

Definition

If $H, M: X \to X$ are self-adjoint and M > 0, the generalized Rayleigh quotient is

$$R_{H,M}(x) = \frac{(x, Hx)}{(x, Mx)} = \frac{(x, MM^{-1}Hx)}{(x, Mx)} = \frac{\langle x, M^{-1}Hx \rangle}{\langle x, x \rangle} := R_{M^{-1}H} \langle x \rangle \quad \text{w.r.t. } \langle x, \rangle.$$

Note that:

- the ordinary Rayleigh quotient is simply $R_H = R_{H,I}$.
- the generalized Rayleigh quotient is an ordinary Rayley quotient.

M. Macauley (Clemson)

The generalized Rayleigh quotient

Key remark

Results on the generalized Rayleigh quotient $R_{H,M}(x)$ follow from interpreting results of the ordinary Rayleigh quotient to

$$R_{M^{-1}H}\langle x\rangle := \frac{\langle x, M^{-1}Hx\rangle}{\langle x, x\rangle} = \frac{(x, Hx)}{(x, Mx)} = R_{H,M}(x).$$

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H:

$$R_H(v_1) = \lambda_1,$$
 where $Hv_1 = \lambda_1 v_1.$

The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of $M^{-1}H$:

$${\it R}_{H,M}(v_1)={\it R}_{M^{-1}H}\langle w_1
angle=\mu_1, \qquad$$
 where $M^{-1}Hw_1=\mu_1w_1.$

Now, w.r.t. the inner product \langle , \rangle , let

$$X_1 := \operatorname{Span}(v_1)^{\perp},$$
 and so $X = X_1 \oplus \operatorname{Span}(v_1),$ dim $X_1 = n - 1.$

The minimum value of the generalized Rayleigh quotient on X_1 is

$$\mu_{2} = \min_{||x||=1} \left\{ R_{M^{-1}H} \langle x \rangle \mid \langle x, v_{1} \rangle = 0 \right\} = \min_{||x|||=1} \left\{ R_{H,M}(x) \mid (x, Mv_{1}) = 0 \right\}$$

where $M^{-1}Hw_2 = \mu_2 w_2$, and μ_2 is the 2nd smallest eigenvalue of $M^{-1}H$.

The min-max principle for the generalized Rayleigh quotient

Theorem 6.10 (recall)

Let $H: X \to X$ be self-adjoint with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then

$$\lambda_k = \min_{\dim S=k} \left\{ \max_{x \in S \setminus 0} R_H(x) \right\}.$$

Proposition 7.8 (HW)

Let $H, M: X \to X$ be self-adjoint and M > 0.

1. Show that there exists a basis v_1, \ldots, v_n of X where each v_i satisfies

$$Hv_i = \mu_i Mv_i \quad (\mu_i \text{ real}), \qquad (v_i, Mv_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- 2. Compute (v_i, Hv_j) , and show that there is an invertible matrix U for which $U^*MU = I$ and U^*HU is diagonal.
- 3. Characterize the numbers μ_1, \ldots, μ_n by a minimax principle.

The Hadamard product of matrices

Let $A = (a_{ij})$ and $B = (b_{ij})$ be matrices of the same size. The Hadamard product of A and B is defined as

 $A \circ B := (a_{ij}b_{ij}).$

Schur's product theorem

If A, B > 0, then so is $A \circ B$.

The idea of the polar decomposition

Every nonzero complex number $z \in \mathbb{C}$ has a unique polar form

$$z = re^{i\theta} = |z|e^{i\theta}, \qquad r \in \mathbb{R}^+, \quad \theta \in [0, 2\pi).$$

This can be thought of as decomposing $z \in \mathbb{C}$ into:

- **a** rotation by θ ,
- a scaling by $|z| = r = \sqrt{\overline{z}z}$.

This is simply the polar decomposition of a 1×1 matrix.

Every linear map $A \in Hom(X, X)$ can be decomposed as A = UP, where

- U is unitary; i.e., an isometry of X,
- $P \ge 0$; a scaling along an orthonormal axis u_1, \ldots, u_n .

It turns out that $P = \sqrt{A^*A} := |A|$, and so sometimes this is written A = U|A|.

In this lecture, we will derive the polar decomposition of a linear map

$$A: X \longrightarrow U$$
, $\dim X = m$, $\dim U = n$.

In the next lecture, we will derive the celebrated singular value decomposition (SVD).

Singular values

Key properties (Propositions 7.2, 7.6)

- A*A ≥ 0;
- Every $P \ge 0$ has a unique nonnegative square root $R := \sqrt{P}$, such that $R^2 = P$.

This means that for some $\lambda_1, \ldots, \lambda_m \geq 0$,

$$A^*A = W \begin{bmatrix} \lambda_1^2 & & \\ & \ddots & \\ & & \lambda_m^2 \end{bmatrix} W^*, \quad \text{and} \quad \sqrt{A^*A} = W \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{bmatrix} W^*.$$

Definition

The eigenvalues of $\lambda_1, \ldots, \lambda_m$ of $\sqrt{A^*A}$ are called the singular values of A.

Facts (that we've seen)

- $||Ax|| = \left| \left| \sqrt{A^*A}x \right| \right| \text{ for all } x \in X.$
- A, A^*A , and $\sqrt{A^*A}$ have the same nullspace.
- A, A^*A , and $\sqrt{A^*A}$ have the same rank.

Polar decomposition of an invertible map

Theorem

Every linear map $A: X \to X$ can be written as A = UP where $P \ge 0$ and U is unitary. This is called the (left) polar decomposition of A.

To construct the polar decomposition, suppose A = UP.

Since $P \ge 0$, we can write $P = QDQ^*$, and so

$$P^*P = (QDQ^*)^*(QDQ^*) = (QD^*Q^*)QDQ^* = QD^2Q^* = P^2.$$

Now, notice that

$$A^*A = (UP)^*(UP) = P^*U^*UP = P^*P = P^2.$$

Therefore, $P = \sqrt{A^*A}$.

If A is invertible, then $U = AP^{-1} = A\sqrt{A^*A}^{-1}$ is uniquely determined.

In this case,

$$A = UP = (A\sqrt{A^*A}^{-1})\sqrt{A^*A}.$$

If A is not invertible, then U still exists, but is not unique.

Polar decomposition of a general linear map

Theorem

Every linear map $A: X \to X$ can be written as A = UP where $P \ge 0$ and U is unitary. This is called the polar decomposition of A.

Suppose the eigenvalues of $\sqrt{A^*A}$ are

$$\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_m = 0,$$

and pick a set x_1, \ldots, x_m of orthonormal eigenvectors. Then

$$\frac{1}{\lambda_1}Ax_1,\ldots,\frac{1}{\lambda_r}Ax_r,x_{r+1},\ldots,x_m$$

is orthonormal. The polar decomposition is A = UP where $P = \sqrt{A^*A}$ and

$$U = \begin{bmatrix} | & | & | & | \\ \frac{1}{\lambda_1} A x_1 & \cdots & \frac{1}{\lambda_r} A x_r & x_{r+1} & \cdots & x_m \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} & - & x_1^H & - \\ & \vdots & \\ & - & x_m^H & - \end{bmatrix}$$

Remark

If $A: X \to X$ and $r := \det P = |\det A|$, then

$$\det A = \det U \det P = e^{i\theta} \cdot r.$$

M. Macauley (Clemson)

Singular value decomposition

Need to do. . .

Partially ordered sets

Recall that a partial order on a set X is a relation \leq that is:

(i) reflexive: $x \le x$ (ii) anti-symmetric: $x \le y$ and $y \le x \Rightarrow x = y$ (iii) transitive: $x \le y \le z \Rightarrow x \le z$.

We say that x < y if $x \leq y$ and $x \neq y$. The pair (X, \leq) is a partially ordered set (poset).

Alternatively, we can define a partial order by a relation < that is

(i) reflexive: x ≤ x
(ii) anti-symmetric: x < y ⇒ y ≤ x
(iii) transitive: x < y < z ⇒ x < z.

Definition

Put a following partial order on the set of self-adjoint maps:

M < N iff N - M > 0, $M \le N$ iff $N - M \ge 0$.

Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:

- (i) If $m_1 < n_1$ and $m_2 < n_2$, then $m_1 + m_2 < n_1 + n_2$.
- (ii) If $\ell < m < n$, then $\ell < n$.
- (iii) If m < n and a > 0, then am < an
- (iv) If 0 < m < n, then 1/m > 1/n > 0.

Proposition 7.9

The following all hold for linear maps on X:

- (i) If $M_1 < N_1$ and $M_2 < N_2$, then $M_1 + M_2 < N_1 + N_2$.
- (ii) If L < M < N, then L < N.
- (iii) Given maps M < N and a scalar a > 0, we have aM < aN.
- (iv) If 0 < M < N, then $M^{-1} > N^{-1} > 0$.

The symmetrized product

Definition

If $A, B: X \rightarrow X$ are self-adjoint, their symmetrized product is

S = AB + BA.

Proposition 7.10

Let A, B be self-adjoint. If A > 0 and AB + BA > 0, then B > 0.