Lecture 7.5: The partial order of positive maps

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Partially ordered sets

Recall that a partial order on a set X is a relation \leq that is:

- (i) reflexive: x < x
- (ii) anti-symmetric: $x \le y$ and $y \le x \Rightarrow x = y$
- (iii) transitive: $x \le y \le z \implies x \le z$.

We say that x < y if x < y and $x \ne y$. The pair (X, <) is a partially ordered set (poset).

Alternatively, we can define a partial order by a relation < that is

- (i) reflexive: $x \not < x$
- (ii) anti-symmetric: $x < y \Rightarrow y \not< x$
- (iii) transitive: $x < y < z \implies x < z$.

Definition

Put a following partial order on the set of self-adjoint maps:

$$M < N$$
 iff $N - M > 0$,

$$M < N$$
 iff $N - M > 0$, $M < N$ iff $N - M > 0$.

Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:

- (i) If $m_1 < n_1$ and $m_2 < n_2$, then $m_1 + m_2 < n_1 + n_2$.
- (ii) If $\ell < m < n$, then $\ell < n$.
- (iii) If m < n and a > 0, then am < an
- (iv) If 0 < m < n, then 1/m > 1/n > 0.

Proposition 7.9

The following all hold for linear maps on X:

- (i) If $M_1 < N_1$ and $M_2 < N_2$, then $M_1 + M_2 < N_1 + N_2$.
- (ii) If L < M < N, then L < N.
- (iii) Given maps M < N and a scalar a > 0, we have aM < aN.
- (iv) If 0 < M < N, then $M^{-1} > N^{-1} > 0$.

The symmetrized product

Definition

If $A, B: X \rightarrow X$ are self-adjoint, their symmetrized product is

$$S = AB + BA$$
.

Proposition 7.10

Let A, B be self-adjoint. If A > 0 and AB + BA > 0, then B > 0.