Visual Algebra (Fall 2022) Final exam

Math 4120, Final Exam. December 13, 2022

1. (8 points) Complete the following formal mathematical definitions. For full credit, propertly
use terminology like V (“for all”) or 3 (“there exists”), where appropriate.

(a) Define what a homomorphism ¢ is between two groups, G and H.

(b) Define the kernel of a homomorphism:

Ker(¢) = { }

(c) Define an action ¢ of a group G on a set S:

(d) Define the kernel of a group action, and write s.¢p(g) for “the image of s under the
permutation ¢(g)”:

Ker(¢) = { }
2. (8 points) Let ¢: G — H be a homomorphism. Show that

Im(¢) == {4(g) | g € G}

is a subgroup of H.
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3. (36 points) The Cayley graph of a group G = (a, b) of order 12 is shown below.

(a) Write the order of each element in the corresponding node in the blank graph.

(b) Write down a presentation for this group.

(c) Find all left cosets of A = (a), then find all right cosets. Write them as subsets.

(d) Find all left cosets of B = (b), then find all right cosets. Write them as subsets.

(e) Find the normalizers Ng(A) and Ng(B).

(f) Are either A or B normal? Why or why not?

(g) Find the conjugacy classes, clg(A) and clg(B), of these subgroups.
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(h) Using only the information that |G| = 12 = 2% - 3, determine the order of a Sylow
2-subgroup, and the order of a Sylow 3-subgroup.

(i) How many Sylow 2-subgroups does G have? How many Sylow 3-subgroups? Justify
your answer.

(j) Is G a simple group? Why or why not?

(k) Find the center, Z(G).

(1) Construct the subgroup lattice. Write the subgroups by their generator(s).
Order = 12 G = (a,b)

1 (1)

(m) There are five groups of order 12: Cj3, Cs x Cy, Dg, Dicg, and Ay. Which group is
this? Briefly justify your answer for full credit.

(n) Is G isomorphic to a direct or semidirect product of nontrivial subgroups? Why or
why not?
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4. (30 points) Answer questions about the following group, whose subgroup lattice is shown

below.

Order = 24 G Index =1

12 Dsg C1s Dicg 2

8 3CaxCy 3

6 Ds D3 Cs 4

4 3 Va Cy 3Cy 6

3 Cs 8

2 3Co 3C Co 12

1 Ch 24
(a) G has subgroup, which fall into conjugacy classes.
(b) G has exactly normal subgroups.
(¢) G has subgroup(s) of order 2 and element(s) of order 2.
(d) G has subgroup(s) of order 3 and element(s) of order 3.
(e) G has subgroup(s) of order 4, of which are cyclic.

Find three distinct pairs of subgroups, H, K < G that have quotient H/K = V.

Each non-normal order-2 subgroup has a normalizer isomorphic to

Each D3 subgroup has a normalizer isomorphic to

This group has a quotient G/Cy isomorphic to . [Hint: Determine the order,
then count the index-2 subgroups.]

This group has a quotient GG/Cy isomorphic to . [Hint: Same as above.]

The quotient G/Cj3 is isomorphic to . [Hint: Determine the order. Which
lattice do you see?]

The commutator subgroup is G' = , and the abelianization is G /G’ =

There are ny = Sylow 2-subgroups, which are isomorphic to

(n) There are ng = Sylow 3-subgroups, which are isomorphic to
(o) The largest order of an element in G is , and there are element(s) of that
order.
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(p) Write G as a (nontrivial) direct product of two subgroups, in as many distinct ways
as possible.

(q) Write G as a (nontrivial) direct semidirect product of two subgroups, in as many
distinct ways as possible.

5. (8 points) Suppose H < G is the only subgroup of order m. Prove that H is normal.

6. (10 points) Use the Sylow theorems to show that there are no simple groups of order pq,
where p < ¢ are distinct primes. Clearly state what result(s) you are using.
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7. (15 points) Consider the following set of “binary rectangles”:

(M X NE KA

The Klein-4 subgroup H = {1,7% rf,r*f} of D, acts on S via ¢: H — Perm(S), where

$(r?) = rotates each tile by 180°
o(rf) = swaps the digits on each tile across the “positively sloped” diagonal axis.

(a) Pick a minimal generating set and then draw the action graph. (Feel free to label
the rectangles above A B,C,D,EF, to save time.)

(b) Find the following:

o ()
o ({)- o ([)-

)

)]

-+

v

&
VR
~~

I

o fix(1) = o fix(rf) =

o fix(r?) = o fix(r3f) =

e This action has orbits, which by the orbit-counting theorem, is also
equal to the average

e Fix(¢) = e Ker(¢) =
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8. (25 points) Fill in the following blanks.

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

The smallest non-cyclic group is

The smallest group with Z(G) # G is

The group A x B has at least normal subgroups (assume |A|, |B| > 1).
. There are more groups of order exactly n = , than of any other n < 1000.
vH = yH if and only if y~ 'z is

The subgroup ((12), (34)) of S5 is isomorphic to

Up to isomorphism, there are abelian group(s) of order 30.

An example of a minimal generating set of S5 of maximal size is

An example of a minimal generating set of S5 of minimum size is

The bin. op. on G/N is well-defined if aN = bN and ¢N = dN, implies

If G acts on its subgroups by conjugation, H € Fix(¢) if and only if

If Qg acts on its subgroups by conjugation, then Ker(¢) =

A group H is a p-subgroup of G if and only if

The second Sylow theorem says that all Sylow p-subgroups are

A nontrivial proper ideal I of a ring cannot contain any

If R is commutative, R/I is a field if and only if I is

An example of a subring that is not an ideal is

A maximal ideal of Z|[z] is

A non-maximal prime ideal of Z[z] is

The finite field Fy5 contains units.

The additive group of the field Fy¢ is isomorphic to

The multiplictive group of the field Fy4 is isomorphic to

Zorn’s lemma is useful for showing that every » € R is contained in

An example of an integral domain that is not a field is

An example of commutative ring that is not an integral domain is
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9. (20 points) Let I be an ideal of a commutative ring R with 1.
(a) The quotient ring consists of the set R/I := { }.
(b) The additive identity is , and the muliplicative identity is :

(c) Write down how addition and multiplication (of cosets) are defined in the quotient
ring.

(d) Carefully define what it means for an element (coset) of R/I to be a zero divisor.

(e) Define what it means for I to be a prime ideal of R.

(f) Prove that I is prime if and only if R/I is an integral domain.
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10. (20 points) Suppose A, B < G and A normalizes B.

(a) Show that B < AB.

(b) You may assume that (AN B) < A. Prove the diamond theorem:
AJ(AN B) = AB/B.

[Hint: Start by defining a explicit map ¢: A — AB/B.]

(¢) Prove the diamond theorem for rings: if S is a subgroup and I an ideal, then
S/(SNI)=(S+1)/I.

You may assume that SN is an ideal of S, and [ is an ideal of (S'+I). [Hint: This
should be very short. The key understanding just what you have to prove. Start
with the map from Part(b), slightly modified because S and I are additive groups.|
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11. (8 points) Make a list of all abelian groups of order 108 = 22 - 33, up to isomorphism.
That is, each group should appear exactly once on your list.

12. (8 points) Draw the subring lattice of Z2 = {00,01,10,11}. Write the subgroups by
generator(s). Then determine which of them are (i) ideals (circle these), (ii) subrings but
not ideals (underline these), (iii) subgroups but not subrings (put an X through these).

13. (4 points) What was your favorite topic in this class? Specifically, what did you find the
most interesting, and why?
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