Math 4120, Final Exam. December 13, 2022

1. (8 points) Complete the following formal mathematical definitions. For full credit, propertly use terminology like \forall ("for all") or \exists ("there exists"), where appropriate.
(a) Define what a homomorphism ϕ is between two groups, G and H.
(b) Define the kernel of a homomorphism:

$$
\operatorname{Ker}(\phi)=\{
$$

(c) Define an action ϕ of a group G on a set S :
(d) Define the kernel of a group action, and write $s \cdot \phi(g)$ for "the image of s under the permutation $\phi(g)$ ":

$$
\operatorname{Ker}(\phi)=\{
$$

$$
\}
$$

2. (8 points) Let $\phi: G \rightarrow H$ be a homomorphism. Show that

$$
\operatorname{Im}(\phi):=\{\phi(g) \mid g \in G\}
$$

is a subgroup of H.
3. (36 points) The Cayley graph of a group $G=\langle a, b\rangle$ of order 12 is shown below.

(a) Write the order of each element in the corresponding node in the blank graph.
(b) Write down a presentation for this group.
(c) Find all left cosets of $A=\langle a\rangle$, then find all right cosets. Write them as subsets.
(d) Find all left cosets of $B=\langle b\rangle$, then find all right cosets. Write them as subsets.
(e) Find the normalizers $N_{G}(A)$ and $N_{G}(B)$.
(f) Are either A or B normal? Why or why not?
(g) Find the conjugacy classes, $\mathrm{cl}_{G}(A)$ and $\mathrm{cl}_{G}(B)$, of these subgroups.
(h) Using only the information that $|G|=12=2^{2} \cdot 3$, determine the order of a Sylow 2 -subgroup, and the order of a Sylow 3 -subgroup.
(i) How many Sylow 2-subgroups does G have? How many Sylow 3-subgroups? Justify your answer.
(j) Is G a simple group? Why or why not?
(k) Find the center, $Z(G)$.
(l) Construct the subgroup lattice. Write the subgroups by their generator(s).

$$
\text { Order }=12
$$

$$
G=\langle a, b\rangle
$$

(m) There are five groups of order 12: $C_{12}, C_{6} \times C_{2}, D_{6}, \operatorname{Dic}_{6}$, and A_{4}. Which group is this? Briefly justify your answer for full credit.
(n) Is G isomorphic to a direct or semidirect product of nontrivial subgroups? Why or why not?
4. (30 points) Answer questions about the following group, whose subgroup lattice is shown below.

(a) G has \qquad subgroup, which fall into \qquad conjugacy classes.
(b) G has exactly \qquad normal subgroups.
(c) G has \qquad subgroup(s) of order 2 and \qquad element(s) of order 2.
(d) G has \qquad subgroup(s) of order 3 and \qquad element(s) of order 3.
(e) G has \qquad subgroup(s) of order 4 , of which \qquad are cyclic.
(f) Find three distinct pairs of subgroups, $H, K \leq G$ that have quotient $H / K \cong V_{4}$.
(g) Each non-normal order-2 subgroup has a normalizer isomorphic to \qquad .
(h) Each D_{3} subgroup has a normalizer isomorphic to \qquad .
(i) This group has a quotient G / C_{4} isomorphic to \qquad . [Hint: Determine the order, then count the index-2 subgroups.]
(j) This group has a quotient G / C_{2} isomorphic to \qquad . [Hint: Same as above.]
(k) The quotient G / C_{3} is isomorphic to \qquad . [Hint: Determine the order. Which lattice do you see?]
(l) The commutator subgroup is $G^{\prime} \cong$ \qquad , and the abelianization is $G / G^{\prime} \cong$ \qquad .
(m) There are $n_{2}=$ \qquad Sylow 2-subgroups, which are isomorphic to \qquad .
(n) There are $n_{3}=$ \qquad Sylow 3-subgroups, which are isomorphic to \qquad .
(o) The largest order of an element in G is \qquad , and there are \qquad element(s) of that order.
(p) Write G as a (nontrivial) direct product of two subgroups, in as many distinct ways as possible.
(q) Write G as a (nontrivial) direct semidirect product of two subgroups, in as many distinct ways as possible.
5. (8 points) Suppose $H \leq G$ is the only subgroup of order m. Prove that H is normal.
6. (10 points) Use the Sylow theorems to show that there are no simple groups of order $p q$, where $p<q$ are distinct primes. Clearly state what result(s) you are using.
7. (15 points) Consider the following set of "binary rectangles":

The Klein-4 subgroup $H=\left\{1, r^{2}, r f, r^{3} f\right\}$ of D_{4} acts on S via $\phi: H \rightarrow \operatorname{Perm}(S)$, where $\phi\left(r^{2}\right)=$ rotates each tile by 180° $\phi(r f)=$ swaps the digits on each tile across the "positively sloped" diagonal axis.
(a) Pick a minimal generating set and then draw the action graph. (Feel free to label the rectangles above $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, to save time.)
(b) Find the following:

- $\operatorname{stab}\binom{0}{\left.1 \begin{array}{c}0 \\ 0\end{array}\right)}=$
- $\left.\operatorname{stab}\left(\begin{array}{c}\boxed{1} \\ 0 \\ 0 \\ 0\end{array}\right]\right)=$
- $\operatorname{stab}\binom{\begin{gathered}0 \\ 0 \\ 0\end{gathered}}{0}=$
- $\left.\operatorname{stab}\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right)=$
- $\operatorname{fix}(1)=$
- $\operatorname{fix}(r f)=$
- $\operatorname{fix}\left(r^{2}\right)=$
- $\operatorname{fix}\left(r^{3} f\right)=$
- This action has \qquad orbits, which by the orbit-counting theorem, is also equal to the average \qquad .
- $\operatorname{Fix}(\phi)=$
- $\operatorname{Ker}(\phi)=$

8. (25 points) Fill in the following blanks.
9. The smallest non-cyclic group is \qquad .
10. The smallest group with $Z(G) \neq G$ is \qquad .
11. The group $A \times B$ has at least \qquad normal subgroups (assume $|A|,|B|>1$).
12. There are more groups of order exactly $n=$ \qquad , than of any other $n<1000$.
13. $x H=y H$ if and only if $y^{-1} x$ is \qquad .
14. The subgroup $\langle(12),(34)\rangle$ of S_{5} is isomorphic to \qquad .
15. Up to isomorphism, there are ___ abelian group(s) of order 30.
16. An example of a minimal generating set of S_{5} of maximal size is \qquad .
17. An example of a minimal generating set of S_{5} of minimum size is \qquad .
18. The bin. op. on G / N is well-defined if $a N=b N$ and $c N=d N$, implies \qquad .
19. If G acts on its subgroups by conjugation, $H \in \operatorname{Fix}(\phi)$ if and only if \qquad .
20. If Q_{8} acts on its subgroups by conjugation, then $\operatorname{Ker}(\phi)=$ \qquad .
21. A group H is a p-subgroup of G if and only if \qquad .
22. The second Sylow theorem says that all Sylow p-subgroups are \qquad .
23. A nontrivial proper ideal I of a ring cannot contain any \qquad .
24. If R is commutative, R / I is a field if and only if I is \qquad .
25. An example of a subring that is not an ideal is \qquad .
26. A maximal ideal of $\mathbb{Z}[x]$ is \qquad .
27. A non-maximal prime ideal of $\mathbb{Z}[x]$ is \qquad .
28. The finite field \mathbb{F}_{16} contains \qquad units.
29. The additive group of the field \mathbb{F}_{16} is isomorphic to \qquad .
30. The multiplictive group of the field \mathbb{F}_{16} is isomorphic to \qquad .
31. Zorn's lemma is useful for showing that every $r \in R$ is contained in \qquad .
32. An example of an integral domain that is not a field is \qquad .
33. An example of commutative ring that is not an integral domain is \qquad .
34. (20 points) Let I be an ideal of a commutative ring R with 1 .
(a) The quotient ring consists of the set $R / I:=\{$ \}.
(b) The additive identity is \qquad , and the muliplicative identity is \qquad .
(c) Write down how addition and multiplication (of cosets) are defined in the quotient ring.
(d) Carefully define what it means for an element (coset) of R / I to be a zero divisor.
(e) Define what it means for I to be a prime ideal of R.
(f) Prove that I is prime if and only if R / I is an integral domain.
35. (20 points) Suppose $A, B \leq G$ and A normalizes B.
(a) Show that $B \unlhd A B$.
(b) You may assume that $(A \cap B) \unlhd A$. Prove the diamond theorem:

$$
A /(A \cap B) \cong A B / B
$$

[Hint: Start by defining a explicit map $\phi: A \rightarrow A B / B$.]
(c) Prove the diamond theorem for rings: if S is a subgroup and I an ideal, then

$$
S /(S \cap I) \cong(S+I) / I
$$

You may assume that $S \cap I$ is an ideal of S, and I is an ideal of $(S+I)$. [Hint: This should be very short. The key understanding just what you have to prove. Start with the map from Part(b), slightly modified because S and I are additive groups.]
11. (8 points) Make a list of all abelian groups of order $108=2^{2} \cdot 3^{3}$, up to isomorphism. That is, each group should appear exactly once on your list.
12. (8 points) Draw the subring lattice of $\mathbb{Z}_{2}^{2}=\{00,01,10,11\}$. Write the subgroups by generator(s). Then determine which of them are (i) ideals (circle these), (ii) subrings but not ideals (underline these), (iii) subgroups but not subrings (put an X through these).
13. (4 points) What was your favorite topic in this class? Specifically, what did you find the most interesting, and why?

