Math 4120, Final Exam. December 13, 2022

- 1. (8 points) Complete the following *formal* mathematical definitions. For full credit, propertly use terminology like \forall ("for all") or \exists ("there exists"), where appropriate.
 - (a) Define what a homomorphism ϕ is between two groups, G and H.
 - (b) Define the *kernel* of a homomorphism:

$$\operatorname{Ker}(\phi) = \Big\{ \Big\}.$$

- (c) Define an *action* ϕ of a group G on a set S:
- (d) Define the *kernel* of a group action, and write $s.\phi(g)$ for "the image of s under the permutation $\phi(g)$ ":

$$\operatorname{Ker}(\phi) = \Big\{ \Big\}.$$

2. (8 points) Let $\phi \colon G \to H$ be a homomorphism. Show that

$$\operatorname{Im}(\phi) := \left\{ \phi(g) \mid g \in G \right\}$$

is a subgroup of H.

3. (36 points) The Cayley graph of a group $G = \langle a, b \rangle$ of order 12 is shown below.

- (a) Write the *order* of each element in the corresponding node in the blank graph.
- (b) Write down a presentation for this group.
- (c) Find all left cosets of $A = \langle a \rangle$, then find all right cosets. Write them as subsets.
- (d) Find all left cosets of $B = \langle b \rangle$, then find all right cosets. Write them as subsets.
- (e) Find the normalizers $N_G(A)$ and $N_G(B)$.
- (f) Are either A or B normal? Why or why not?
- (g) Find the conjugacy classes, $cl_G(A)$ and $cl_G(B)$, of these subgroups.

- (h) Using only the information that $|G| = 12 = 2^2 \cdot 3$, determine the order of a Sylow 2-subgroup, and the order of a Sylow 3-subgroup.
- (i) How many Sylow 2-subgroups does G have? How many Sylow 3-subgroups? Justify your answer.
- (j) Is G a simple group? Why or why not?
- (k) Find the center, Z(G).
- (l) Construct the subgroup lattice. Write the subgroups by their generator(s). **Order** = 12 $G = \langle a, b \rangle$

6		
4		
3		
2		
1		$\langle 1 \rangle$

- (m) There are five groups of order 12: C_{12} , $C_6 \times C_2$, D_6 , Dic_6 , and A_4 . Which group is this? Briefly justify your answer for full credit.
- (n) Is G isomorphic to a direct or semidirect product of nontrivial subgroups? Why or why not?

4. (30 points) Answer questions about the following group, whose subgroup lattice is shown below.

- (p) Write G as a (nontrivial) direct product of two subgroups, in as many distinct ways as possible.
- (q) Write G as a (nontrivial) direct semidirect product of two subgroups, in as many distinct ways as possible.
- 5. (8 points) Suppose $H \leq G$ is the only subgroup of order m. Prove that H is normal.

6. (10 points) Use the Sylow theorems to show that there are no simple groups of order pq, where p < q are distinct primes. Clearly state what result(s) you are using.

7. (15 points) Consider the following set of "binary rectangles":

The Klein-4 subgroup $H = \{1, r^2, rf, r^3f\}$ of D_4 acts on S via $\phi: H \to \text{Perm}(S)$, where

 $\phi(r^2) = \text{rotates each tile by } 180^\circ$

 $\phi(rf) =$ swaps the *digits* on each tile across the "positively sloped" diagonal axis.

(a) Pick a minimal generating set and then draw the *action graph*. (Feel free to label the rectangles above A,B,C,D,E,F, to save time.)

(b) Find the following:

- This action has ______ orbits, which by the orbit-counting theorem, is also equal to the average _____
- $\operatorname{Fix}(\phi) =$ $\operatorname{Ker}(\phi) =$

8. (25 points) Fill in the following blanks.			
1. The smallest non-cyclic group is			
. The smallest group with $Z(G) \neq G$ is			
The group $A \times B$ has at least normal subgroups (assume $ A , B > 1$).			
There are more groups of order exactly $n = $, than of any other $n < 1000$.			
$xH = yH$ if and only if $y^{-1}x$ is			
6. The subgroup $\langle (12), (34) \rangle$ of S_5 is isomorphic to			
7. Up to isomorphism, there are abelian group(s) of order 30.			
An example of a minimal generating set of S_5 of maximal size is			
An example of a minimal generating set of S_5 of minimum size is			
The bin. op. on G/N is well-defined if $aN = bN$ and $cN = dN$, implies			
If G acts on its subgroups by conjugation, $H \in Fix(\phi)$ if and only if			
If Q_8 acts on its subgroups by conjugation, then $\operatorname{Ker}(\phi) = $			
A group H is a p -subgroup of G if and only if			
The second Sylow theorem says that all Sylow <i>p</i> -subgroups are			
15. A nontrivial proper ideal I of a ring cannot contain any			
If R is commutative, R/I is a field if and only if I is			
17. An example of a subring that is not an ideal is			
A maximal ideal of $\mathbb{Z}[x]$ is			
19. A non-maximal prime ideal of $\mathbb{Z}[x]$ is			
20. The finite field \mathbb{F}_{16} contains units.			
The additive group of the field \mathbb{F}_{16} is isomorphic to			
The multiplictive group of the field \mathbb{F}_{16} is isomorphic to			
Zorn's lemma is useful for showing that every $r \in R$ is contained in			
24. An example of an integral domain that is not a field is			
25. An example of commutative ring that is not an integral domain is			

- 9. (20 points) Let I be an ideal of a commutative ring R with 1.
 - (a) The quotient ring consists of the set $R/I := \{$
 - (b) The additive identity is _____, and the muliplicative identity is _____.
 - (c) Write down how addition and multiplication (of cosets) are defined in the quotient ring.

(d) Carefully define what it means for an element (coset) of R/I to be a zero divisor.

(e) Define what it means for I to be a *prime ideal* of R.

(f) Prove that I is prime if and only if R/I is an integral domain.

- 10. (20 points) Suppose $A, B \leq G$ and A normalizes B.
 - (a) Show that $B \trianglelefteq AB$.
 - (b) You may assume that $(A \cap B) \leq A$. Prove the diamond theorem:

 $A/(A \cap B) \cong AB/B.$

[*Hint*: Start by defining a explicit map $\phi: A \to AB/B$.]

(c) Prove the diamond theorem for rings: if S is a subgroup and I an ideal, then

$$S/(S \cap I) \cong (S+I)/I.$$

You may assume that $S \cap I$ is an ideal of S, and I is an ideal of (S+I). [Hint: This should be very short. The key understanding just what you have to prove. Start with the map from Part(b), slightly modified because S and I are additive groups.]

11. (8 points) Make a list of all abelian groups of order $108 = 2^2 \cdot 3^3$, up to isomorphism. That is, each group should appear exactly once on your list.

12. (8 points) Draw the subring lattice of $\mathbb{Z}_2^2 = \{00, 01, 10, 11\}$. Write the subgroups by generator(s). Then determine which of them are (i) ideals (circle these), (ii) subrings but not ideals (underline these), (iii) subgroups but not subrings (put an X through these).

13. (4 points) What was your favorite topic in this class? Specifically, what did you find the most interesting, and why?