Math 4120, Midterm 1. October 12, 2022

Write your answers for these problems directly on this paper. You should be able to fit them in the space given.

1. (10 points) Let G be a group with an index- 5 subgroup $H=\langle a, b\rangle$, and an index- 4 subgroup K. Be as specific as possible with your answers.
(a) There are \qquad left cosets of K, and \qquad right cosets.
(b) If $c \in H$, then $\langle a, b, c\rangle=$ \qquad . Otherwise, $\langle a, b, c\rangle=$ \qquad .
(c) If $H K$ is a subgroup, then it must be \qquad .
(d) If $K \lesseqgtr N \lesseqgtr G$, then $N \unlhd G$ because \qquad .
(e) The normalizer of K can have index $\left[G: N_{G}(K)\right]=$ \qquad (list all possibilities).
(f) The possible size(s) of the conjugacy class $\mathrm{cl}_{G}(K)$ is/are \qquad (list all possibilities).
(g) If H is not normal, then the possible size(s) of its conjugacy class $\mathrm{cl}_{G}(H)$ is/are \qquad .
2. (6 points) Finish the following definition. Don't just list the properties; actually define what they mean, correctly using "there exists" and "for all" (i.e., \exists and \forall), where appropriate.

- A group is a set G with a binary operation $*$ satisfying the following properties:

3. (6 pts) Give 3 different equivalent conditions of what it means for a subgroup $H \leq G$ to be normal in G : one involving cosets, one involving conjugate subgroups, and one involving conjugates of elements. As before, make sure that you use "for all" or \forall, where appropriate.
(i)
(ii)
(iii)
4. (8 pts) Let $H=\{1, h\} \leq G$ be a subgroup of order 2. Prove that if $H \unlhd G$, then H is contained in the center, $Z(G):=\{z \in G \mid z g=g z, \forall g \in G\}$.
5. (15 points) Consider the dihedral group $D_{3}=\left\langle r, f \mid r^{3}=f^{2}=1, r f=f r^{2}\right\rangle$.
(a) Draw a Cayley graph of D_{3}, and label the nodes with elements.
(b) Draw the subgroup lattice, listing subgroups by generator(s). Label each edge between $K \leq H$ with the corresponding index, $[H: K]$. Then, use circles to partition the subgroups into conjugacy classes.
(c) Draw the cycle graph of D_{3}.

Cayley graph
subgroup lattice
cycle graph
6. (24 pts) Consider the group G whose Cayley graph is shown below, with subgroups $H=\langle r\rangle$ and $K=\langle a, b\rangle$.

(a) Inside each node on the right-most diagram, write the order of the corresponding element.
(b) These subgroups are isomorphic to familiar groups: $H \cong$ \qquad and $K \cong$ \qquad .
(c) Find the left cosets of $H=\langle r\rangle$, then find the right cosets. Write them as subsets, or describe them in words (e.g., "the rows" or "the columns").
(d) Find the left cosets of $K=\langle a, b\rangle$, then find the right cosets. Write them as subsets, or describe them in words (e.g., "the rows" or "the columns").
(e) Find the normalizers of H and K. Write them by generator(s), and say what familiar group each is isomorphic to.
(f) Find all conjugate subgroups to H and to K. Write each group by generator(s).
(g) The center of this group is $Z(G)=$ \qquad .
(h) Subgroup lattices of three groups of order 16 are shown below. Recall that the nodes are "collpased" to represent conjugacy classes, and those of the non-normal subgroups have a "left subscript" that denotes their size. Determine which is the actual subgroup lattice of G, and fully justify your answer. [Hint: One way to do this is to eliminate the two incorrect lattices, and you will get points for each one that is done successfully - find a reason why it cannot be G.]

7. (10 points) Make a list of all abelian groups of order $216=2^{3} \cdot 3^{3}$. That is, every abelian group of order 216 should be isomorphic to precisely one group on your list. Feel free to write e.g., $C_{2}^{2}:=C_{2} \times C_{2}$ for short. Finally, circle every group on your list that is cyclic.
8. (9 points) Given a subgroup $H \leq G$ and element $x \in G$, prove that $x H x^{-1}=\left\{x h x^{-1} \mid h \in H\right\}$ is a subgroup of G.
9. (12 points) Answer the following about permutations and the symmetric group S_{n}.
(a) The order of the permutation $\pi=(123)(456789)$ in S_{9} is \qquad
(b) The inverse of the permutation $\pi=(123)(456789)$ in S_{9} is $\pi^{-1}=$ \qquad
(c) The product of $\pi=(12)(465)$ and $\sigma=(1423)(56)$ in S_{6}, is $\pi \sigma=$ \qquad .
(d) The subgroup $\langle(12),(45)\rangle$ of S_{5} is isomorphic to \qquad .
(e) The conjugacy class of $\pi=(12)$ in S_{3} is $\operatorname{cl}_{S_{3}}(\pi)=$ \qquad .
(f) The alternating group A_{n} consists of all \qquad permutations, and has order \qquad -

