Math 4120, Midterm 1. October 12, 2022

Write your answers for these problems *directly on this paper*. You should be able to fit them in the space given.

- 1. (10 points) Let G be a group with an index-5 subgroup $H = \langle a, b \rangle$, and an index-4 subgroup K. Be as specific as possible with your answers.
 - (a) There are ______ left cosets of K, and ______ right cosets.
 (b) If c ∈ H, then ⟨a, b, c⟩ = ______. Otherwise, ⟨a, b, c⟩ = ______.
 (c) If HK is a subgroup, then it must be ______.
 (d) If K ≤ N ≤ G, then N ≤ G because ______.
 (e) The normalizer of K can have index [G : N_G(K)] = ______ (list all possibilities).
 (f) The possible size(s) of the conjugacy class cl_G(K) is/are ______ (list all possibilities).
 (g) If H is not normal, then the possible size(s) of its conjugacy class cl_G(H) is/are ______.
- 2. (6 points) Finish the following definition. Don't just list the properties; actually define what they mean, correctly using "there exists" and "for all" (i.e., \exists and \forall), where appropriate.
 - A group is a set G with a binary operation * satisfying the following properties:

- 3. (6 pts) Give 3 different equivalent conditions of what it means for a subgroup $H \leq G$ to be normal in G: one involving cosets, one involving conjugate subgroups, and one involving conjugates of elements. As before, make sure that you use "for all" or \forall , where appropriate.
 - (i)
 - (ii)
 - (iii)
- 4. (8 pts) Let $H = \{1, h\} \leq G$ be a subgroup of order 2. Prove that if $H \leq G$, then H is contained in the *center*, $Z(G) := \{z \in G \mid zg = gz, \forall g \in G\}$.

- 5. (15 points) Consider the dihedral group $D_3 = \langle r, f \mid r^3 = f^2 = 1, rf = fr^2 \rangle$.
 - (a) Draw a Cayley graph of D_3 , and label the nodes with elements.
 - (b) Draw the *subgroup lattice*, listing subgroups by generator(s). Label each edge between $K \leq H$ with the corresponding index, [H:K]. Then, use circles to partition the subgroups into conjugacy classes.
 - (c) Draw the cycle graph of D_3 .

$Cayley \ graph$

subgroup lattice

cycle graph

6. (24 pts) Consider the group G whose Cayley graph is shown below, with subgroups $H = \langle r \rangle$ and $K = \langle a, b \rangle$.

- (a) Inside each node on the right-most diagram, write the order of the corresponding element.
- (b) These subgroups are isomorphic to familiar groups: $H \cong$ _____ and $K \cong$ _____.
- (c) Find the left cosets of $H = \langle r \rangle$, then find the right cosets. Write them as subsets, or describe them in words (e.g., "the rows" or "the columns").
- (d) Find the left cosets of $K = \langle a, b \rangle$, then find the right cosets. Write them as subsets, or describe them in words (e.g., "the rows" or "the columns").

- (e) Find the normalizers of H and K. Write them by generator(s), and say what familiar group each is isomorphic to.
- (f) Find all conjugate subgroups to H and to K. Write each group by generator(s).
- (g) The center of this group is Z(G) =
- (h) Subgroup lattices of three groups of order 16 are shown below. Recall that the nodes are "collpased" to represent conjugacy classes, and those of the non-normal subgroups have a "left subscript" that denotes their size. Determine which is the actual subgroup lattice of G, and fully justify your answer. [*Hint*: One way to do this is to eliminate the two incorrect lattices, and you will get points for each one that is done successfully find a reason why it cannot be G.]

7. (10 points) Make a list of all abelian groups of order $216 = 2^3 \cdot 3^3$. That is, every abelian group of order 216 should be isomorphic to precisely <u>one</u> group on your list. Feel free to write e.g., $C_2^2 := C_2 \times C_2$ for short. Finally, circle every group on your list that is *cyclic*.

8. (9 points) Given a subgroup $H \leq G$ and element $x \in G$, prove that $xHx^{-1} = \{xhx^{-1} \mid h \in H\}$ is a subgroup of G.

9. (12 points) Answer the following about permutations and the symmetric group S_n .

(a) The order of the permutation $\pi = (123)(456789)$ in S_9 is
(b) The <i>inverse</i> of the permutation $\pi = (123)(456789)$ in S_9 is $\pi^{-1} =$
(c) The product of $\pi = (12)(465)$ and $\sigma = (1423)(56)$ in S_6 , is $\pi \sigma =$
(d) The subgroup $\langle (12), (45) \rangle$ of S_5 is isomorphic to
(e) The conjugacy class of $\pi = (12)$ in S_3 is $cl_{S_3}(\pi) =$
(f) The alternating group A_n consists of all permutations, and has order