Math 4120, Fall 2022

Study guide: Midterm 1.

Note: This is just a guide, not an all-inclusive list.

Definitions to know.

- (1) A group G. (The "official" definition.)
- (2) The order of an element $g \in G$.
- (3) A left coset xH of a subgroup $H \leq G$.
- (4) A normal subgroup $H \trianglelefteq G$.
- (5) The index [G:H] of a subgroup $H \leq G$.
- (6) The direct product $A \times B$ of two groups A and B.
- (7) The quotient G/H of a group G by a normal subgroup $H \trianglelefteq G$.
- (8) The normalizer $N_G(H)$ of a subgroup $H \leq G$.
- (9) The center Z(G) of a group.
- (10) What it means for multiplication $aH \cdot bH := abH$ in the quotient group G/H to be well-defined.

Cayley diagrams and presentations.

- (1) Be able to use a Cayley diagram as a "group calculator", e.g., multiply elements and find their inverses.
- (2) Be able to construct Cayley diagrams of V_4 , C_n , D_n , Q_8 , Dic_n , SD_8 , SA_8 , and write a group presentation for these groups.
- (3) Given an unknown Cayley diagrams, write a group presentation that describes it.
- (4) Be able to identify left and right cosets from a Cayley diagram.
- (5) Be able to find the normalizer of a subgroup from a Cayley diagram.

Cycle diagrams.

- (1) Be able to construct a cycle diagram of groups like C_n , D_n , and Q_8 .
- (2) Use a cycle diagram to identity all cyclic subgroups, the first step in constructing a subgroup lattice.

Subgroup lattices.

- (1) Be able to construct the subgroup lattices of \mathbb{Z}_n , V_4 , $D_3 \cong S_3$, D_4 , D_5 , Q_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, and A_4 .
- (2) Be able to label the edges of a subgroup lattice with the index, [H:K].
- (3) Know how to be "fluent" reading subgroup lattices. For example, given H and K, where to find $H \cap K$ and $\langle H \cup K \rangle$, and how to identify when a subgroup is normal (e.g., G, $\{e\}$, index-2 subgroups, and unicorns).
- (4) Be able to determine the normalizer of H on a Cayley diagram, given knowledge of its conjugacy class, or vice-versa.

Helpful misc. facts about familiar groups.

- (1) The cyclic group C_n is generated by r^k , iff gcd(n,k) = 1.
- (2) $C_n \times C_m \cong C_{nm}$ iff gcd(n,m) = 1.
- (3) Every subgroup of Q_8 is normal.
- (4) The dihedral group D_n has n or n + 1 elements of order 2, depending on the parity of n. It can be generated by a rotation and reflection, or two adjacent reflections.
- (5) The dihedral group D_n is a semidirect product $C_n \rtimes_{\theta} C_2$.
- (6) There is one frieze group that needs three symmetries to generate it. It contains three non-abelian frieze groups (the "infinite dihedral group") as subgroups: (i) removing all horizontal reflections, (ii) remove all 180°-rotations, or (iii) remove half of each of these.
- (7) Know how to represent the groups V_4 , C_n , D_n , Q_n , and Dic_n with 2×2 matrices.

- (8) Two canonical generatating sets for the symmetric group: $S_n = \langle (12), (123 \cdots n) \rangle = \langle (12), (23), \dots, (n-1 n) \rangle.$
- (9) Know the difference between *minimal* and *minimum* generating sets.
- (10) The automorphism group $\operatorname{Aut}(C_n)$ (of "rewirings") is isomorphic to the group

$$U_n = \{k \mid 1 \le k < n, \gcd(n, k) = 1\}.$$

(11) Know how to construct the Cayley diagram of $\operatorname{Aut}(C_n)$, and a semidirect product, given a "labeling map" $\theta: H \to \operatorname{Aut}(C_n)$.

Useful facts and techniques.

- (1) Two different ways to show that a subset $H \subseteq G$ is a subgroup.
- (2) Three different ways to show that a subgroup $H \leq G$ is normal.
- (3) Know to how compose permutations in cycle notation, and find inverses, e.g., $(123 \cdots n)^{-1} = (1n \cdots 32)$.
- (4) Know which permutations are even vs. odd.
- (5) Learn to classify all finite abelian groups of a fixed order.

Proofs to learn.

- (1) Show that the identity element of a group is unique.
- (2) Show that every element in a group has a unique inverse.
- (3) Show that if $\{H_{\alpha} \mid \alpha \in A\}$ is a collection of subgroups, then $\bigcap H_{\alpha}$ is a subgroup.
- (4) Show that xH = H if and only if $x \in H$.
- (5) Show that if [G:H] = 2, then $H \leq G$.
- (6) Show that the center $Z(G) = \{z \in G \mid gz = zg, \forall g \in G\}$ is a subgroup of G and that it is normal.

 $\alpha \in A$

- (7) Let $H \leq G$. Prove that multiplication of cosets is well-defined: if $a_1H = a_2H$ and $b_1H = b_2H$, then $a_1H \cdot b_1H = a_2H \cdot b_2H$. Additionally, show that G/H is a group under this binary operation.
- (8) The tower law: [G:H][H:K] = [G:K].
- (9) Show that the normalizer $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is a subgroup of G.
- (10) Show that if $A, B \leq G$, and A normalizes B, then AB is a subgroup of G.

Study guide: Midterm 2.

Definitions to know.

- (1) The conjugacy class $cl_G(x)$ of an element $x \in G$, and the conjugacy class $cl_G(H)$ of a subgroup.
- (2) The centralizer $C_G(x)$ of an element $x \in G$.
- (3) A homomorphism ϕ from a group G to a group H.
- (4) What it means for a homomorphism to be an *embedding* and a *quotient*.
- (5) An isomorphism $\phi: G \to H$.
- (6) An automorphism $\phi: G \to H$.
- (7) The kernel of a homomorphism $\phi: G \to H$.
- (8) What it means for a map $f: G/N \to H$ to be well-defined.
- (9) The commutator subgroup G' of a group G, and the abelianization G/G'.
- (10) An inner automorphism and outer automorphism of G.
- (11) A group action of G on a set S.
- (12) Local features of an action: the orbit $\operatorname{orb}(s)$ and stabilizer $\operatorname{stab}(s)$ of $s \in S$, and the fixed point set $\operatorname{fix}(g)$ of $g \in G$.
- (13) Global features of an action: the set $Fix(\phi)$ of fixed points, and the kernel $Ker(\phi)$.

Useful facts and techniques.

- (1) Two elements in S_n are conjugate iff they have the same cycle type.
- (2) If n is odd, then all reflections in D_n are conjugate. If n is even, then there are two conjugacy classes of reflections.
- (3) $\operatorname{cl}_G(x) = \{x\}$ if and only if $x \in Z(G)$.
- (4) $\operatorname{cl}_G(H) = \{H\}$ if and only if $H \leq G$.
- (5) Use the fact that $|cl_G(x)| = [G : C_G(x)]$ to help partition G by conjugacy classes, and/or find the centralizer.
- (6) Use the fact that $|\operatorname{cl}_G(H)| = [G: N_G(H)]$ to help partition G's subgroups by conjugacy classes, and/or find the normalizer.
- (7) Be able to show that a certain map is a homomorphism, using the definition.
- (8) A homomorphism is 1-to-1 iff $\text{Ker}(\phi) = \langle 1 \rangle$.
- (9) There are two ways to prove that $G/N \cong H$: Either construct a map $G/N \to H$ and prove it is a well-defined bijective homorphism, or construct a map $\phi: G \to H$ and prove it is an onto homomorphism with $\operatorname{Ker}(\phi) = N$.
- (10) Learn the statement of the correspondence theorem: there is a 1–1 correspondence between subgroup of G/N and subgroups of G that contain N. Moreover, every subgroup of G/N is of the form H/N for some $N \leq H \leq G$. Be able to interpret this visually in terms of subgroup lattices.
- (11) Be able to recongize subgroups and quotients of a group simply from the subgroup lattice: subgroups appears as "stagmites", and quotients as "stalactites."
- (12) Learn how to identify the commutator subgroup of G and abelinization G/G' just from the subgroup lattice.
- (13) The automorphism group of a cyclic group is $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$, the multiplitive group of integers modulo n.
- (14) Inner automorphism have the form $\varphi_g \colon x \mapsto gxg^{-1}$. The inner automorphism group of G is $\operatorname{Inn}(G) \cong G/Z(G)$. That is, $\varphi_g = \varphi_h$ iff g and h are in the same cosets of Z(G).
- (15) Given only a subgroup lattice of G, be able to determine whether G is isomorphic to the semidirect product, or direct product, of two of its subgroups.
- (16) The orbit-stabilizer theorem: If G acts on S, then $|G| = |\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)|$ for any $s \in S$.
- (17) The orbit counting theorem: the average size of fix(g) is the number of orbits.
- (18) Learn the local features (orbits, stabilizers, fixed point sets), and global features (kernel, set of fixed points) for each of the following actions: following actions:
 - (i) G acting on itself by right multiplication.

- (ii) G acting on itself by conjugation.
- (iii) G acting on its subgroups by conjugation.
- (iv) G acting on its right cosets by right multiplication.
- (19) Constructing the "fixed point table" of an action, and identifying the features of an action from it.

Proofs to learn.

- (1) If $\phi: G \to H$ is a homomorphism, then $\phi(1_G) = 1_H$.
- (2) If $\phi: G \to H$ is a homomorphism, then $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
- (3) If G is abelian, then so is G/H.
- (4) If G/Z(G) is cyclic, then G is abelian (and hence G/Z(G) is the trivial group).
- (5) The kernel of any homomorphism is a subgroup, and is normal.
- (6) Given a homomorphism $\phi: G \to H$, each preimage $\phi^{-1}(h)$ is a coset of $\operatorname{Ker}(\phi)$.
- (7) $A \times B \cong B \times A$.
- (8) If $H \leq G$, then $xHx^{-1} \cong H$ for any $x \in G$.
- (9) There is no embedding $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}$.
- (10) If $\varphi \colon G \to H$ is a homomorphism and $N \leq H$, then $\varphi^{-1}(N)$ is a normal subgroup of G.
- (11) If $H \leq G$ is the only subgroup of G of order |H|, then it must be normal.
- (12) The FHT: if $\phi: G \to H$ is a homomorphism, then $G/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$.
- (13) The correspondence theorem: every subgroup of G/N is has the form H/N, for some $H \leq G$ that contains N.
- (14) The freshman theorem: given a chain $N \leq H \leq G$ of normal subgroups of G, $(G/N)/(H/N) \cong G/H$.
- (15) The diamond isomorphism theorem: if A normalizes G, then $AB \leq G$, $B \leq AB$, $(A \cap B) \leq A$, and $AB/B \cong A/(A \cap B)$.
- (16) Use the FHT to show that $|NH| = |N| \cdot |H|/|N \cap H|$.
- (17) Show that $\mathbb{Q}^* \cong \mathbb{Q}^+ \times C_2$ and $\mathbb{Q}^*/\langle -1 \rangle \cong \mathbb{Q}^+$, where \mathbb{Q}^* is the nonzero rationals under multiplication, and $\mathbb{Q}^+ \leq \mathbb{Q}^*$ is the subgroup of positive rationals.
- (18) Show that G is abelian iff its commutator subroup $G' = \{e\}$.
- (19) Show that G/G' is abelian.
- (20) Show that Inn(G) is a normal subgroup of Aut(G).
- (21) Use the FHT to show that $G/Z(G) \cong \text{Inn}(G)$.
- (22) Show that if G acts on S, then stab(s) is a subgroup of G, for any $s \in S$.
- (23) Show that if G is a p-group, then |Z(G)| > 1.
- (24) Show how Cayley's theorem follows from the orbit-stabilizer theorem, and a group acting on itself by multiplication.
- (25) Show that if G has no subgroup of index 2, then any subgroup of index 3 is normal.
- (26) Show that of [G:H] = p for the smallest prime dividing |G|, then $H \leq G$.

Study guide: Final exam.

Note: This is in addition, not instead, of the Midterm 1 and 2 material.

Definitions to memorize.

- (1) A *p*-group, and a Sylow *p*-subgroup of a group G.
- (2) A ring R.
- (3) A *unit*, and a *zero divisor* of a ring.
- (4) An *ideal* of a ring R (left, right, and two-sided).
- (5) Types of rings: integral domain, division ring, principle ideal domain (PID), unique factorization domain (UFD), Euclidean domain, field.
- (6) The quotient ring R/I for some two-sided ideal I, and how to multiply elements.
- (7) A homomorphism ϕ from a ring R to a ring S.
- (8) A maximal ideal and a prime ideal of a ring R.
- (9) A prime and irreducible element of a PID.

Useful facts and techniques.

- (1) Learn how to use the 3rd Sylow theorem to show that a group of a certain order is simple. (Usually, by showing that $n_p = 1$ for some prime p.)
- (2) Know that fields ⊊ Euclidean domains ⊊ PIDs ⊊ UFDs ⊊ integral domains ⊊ commutative rings ⊊ all rings. And be able to give an example that's in each class, but not in any smaller ones.
- (3) Know examples of both maximal ideals and prime ideals, prime ideals that aren't maximal.
- (4) Learn how to construct a finite field \mathbb{F}_q of order $q = p^k$.
- (5) Know the statements of the fundamental homomorphism theorem and the correspondence theorem for rings and how to apply them.
- (6) Every prime is irreducible, but not every irreducible is prime (examples?). In a PID, these definitions are equivalent.

Proofs to learn.

- (1) If an ideal I of R contains a unit, then I = R.
- (2) The FHT for rings: if $\phi: R \to S$ is a ring homomorphism, then $\operatorname{Ker}(\phi)$ is an ideal of R and $R/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$.
- (3) The following are equivalent for commutative rings: (i) I is a maximal ideal, (ii) R/I is simple, (iii) R/I is a field.
- (4) An ideal P is prime iff R/P is an integral domain.
- (5) A ring R is an integral domain iff 0 is a prime ideal.
- (6) Every maximal ideal is prime.