1. For each n, sketch the $n^{\text {th }}$ roots of unity on the unit circle, and list the primitive $d^{\text {th }}$ roots for each $d \mid n$. Then factor $x^{n}-1$ as a product of irreducible polynomials.
(a) $n=8$
(b) $n=9$
(c) $n=10$
(d) $n=16$.
2. For each n from the previous problem, the set $U_{n}:=\{k \mid 0<k<n, \operatorname{gcd}(n, k)=1\}$ forms a group under multiplication, where the result is taken modulo n. Construct a Cayley table, Cayley diagram, and determine to which familiar group it is isomorphic.
3. Below are Cayley diagrams of the generalized quaternion group $Q_{16}=\left\langle\zeta_{8}, j\right\rangle$, defined by replacing $\zeta_{4}=e^{2 \pi i / 4}=i$ with $\zeta_{8}=e^{2 \pi i / 8}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ in the quaternion group Q_{8}.

(a) Draw these diagrams and label each node as $a+b i+c j+d k$. Then re-draw them with each node labeled as either $\pm \zeta^{m}$ or $\pm \zeta^{m} j$, where $\zeta=\zeta_{8}$ and $m=0,1,2,3$.
(b) Identifying elements of Q_{16} with their negatives defines a group on 8 elements:

$$
\pm 1, \quad \pm \zeta, \quad \pm \zeta^{2}, \quad \pm \zeta^{3}, \quad \pm j, \quad \pm \zeta j, \quad \pm \zeta^{2} j, \quad \pm \zeta^{3} j
$$

Construct a Cayley table and Cayley diagram. Which familiar group is this?
4. For each part below, the two matrices given generate a group $G=\langle A, B\rangle$, where the binary operation is matrix multiplication. Draw a Cayley diagram for each group, write a presentation, and determine to which familiar group is it isomorphic.
(a) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right], B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(b) $A=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
(d) $A=\left[\begin{array}{cc}e^{2 \pi i / 8} & 0 \\ 0 & e^{-2 \pi i / 8}\end{array}\right], B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
5. For the numbers below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Then, determine which group it is isomorphic to of the form $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$, where $n_{i+1} \mid n_{i}$.
(a) $32=2^{5}$
(b) $36=2^{2} \cdot 3^{2}$
(c) $400=2^{4} \cdot 5^{2}$
(d) $p^{3} q$; primes $p \neq q$

