1. For each n, sketch the n^{th} roots of unity on the unit circle, and list the primitive d^{th} roots for each $d \mid n$. Then factor $x^n - 1$ as a product of irreducible polynomials.

(a)
$$n = 8$$
 (b) $n = 9$ (c) $n = 10$ (d) $n = 16$

- 2. For each *n* from the previous problem, the set $U_n := \{k \mid 0 < k < n, \text{gcd}(n, k) = 1\}$ forms a group under multiplication, where the result is taken modulo *n*. Construct a Cayley table, Cayley diagram, and determine to which familiar group it is isomorphic.
- 3. Below are Cayley diagrams of the generalized quaternion group $Q_{16} = \langle \zeta_8, j \rangle$, defined by replacing $\zeta_4 = e^{2\pi i/4} = i$ with $\zeta_8 = e^{2\pi i/8} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ in the quaternion group Q_8 .

- (a) Draw these diagrams and label each node as a + bi + cj + dk. Then re-draw them with each node labeled as either $\pm \zeta^m$ or $\pm \zeta^m j$, where $\zeta = \zeta_8$ and m = 0, 1, 2, 3.
- (b) Identifying elements of Q_{16} with their negatives defines a group on 8 elements:

$$\pm 1, \ \pm \zeta, \ \pm \zeta^2, \ \pm \zeta^3, \ \pm j, \ \pm \zeta j, \ \pm \zeta^2 j, \ \pm \zeta^3 j.$$

Construct a Cayley table and Cayley diagram. Which familiar group is this?

4. For each part below, the two matrices given generate a group $G = \langle A, B \rangle$, where the binary operation is matrix multiplication. Draw a Cayley diagram for each group, write a presentation, and determine to which familiar group is it isomorphic.

(a)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. (c) $A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
(b) $A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. (d) $A = \begin{bmatrix} e^{2\pi i/8} & 0 \\ 0 & e^{-2\pi i/8} \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- 5. For the numbers below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Then, determine which group it is isomorphic to of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$, where $n_{i+1} \mid n_i$.
 - (a) $32 = 2^5$ (b) $36 = 2^2 \cdot 3^2$ (c) $400 = 2^4 \cdot 5^2$ (d) $p^3 q$; primes $p \neq q$