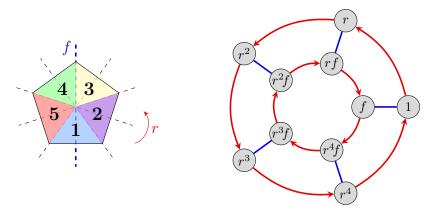
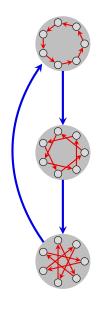
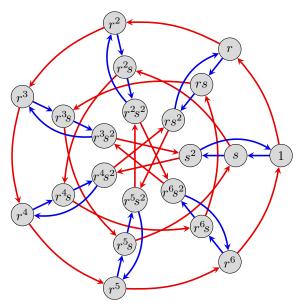
1. All of the subgroups of D_5 should be visually apparent from thinking about symmetries of a regular pentagon, shown below at left. At right is a Cayley diagram.



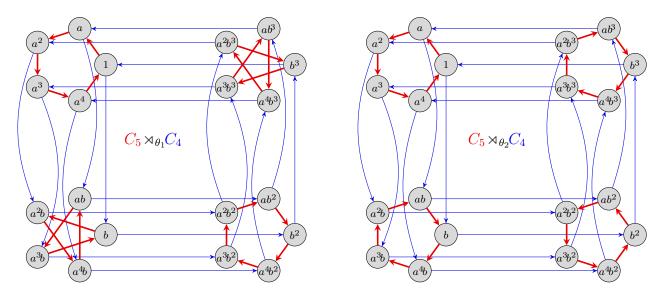
- (a) Construct a subgroup lattice for D_5 . Label each edge from H to K with [H:K].
- (b) Find the left and right cosets of the subgroups $\langle r \rangle$ and $\langle f \rangle$.
- (c) The normalizer of $H \leq G$, denoted $N_G(H)$, is the union of the left cosets of H that are also right cosets. Find the normalizer of $\langle r \rangle$ and $\langle f \rangle$.
- (d) Two subgroups $H, K \leq G$ are *conjugate* if $K = gHg^{-1} := \{ghg^{-1} \mid h \in H\}$ for some $g \in G$. This defines an equivalence relation on the set of subgroups called *conjugacy classes*. Partition the subgroups of D_5 into conjugacy classes.
- 2. Cayley diagram of the smallest non-abelian group of odd order, $G = C_7 \rtimes C_3$, is shown below, highlighting its semidirect product structure.



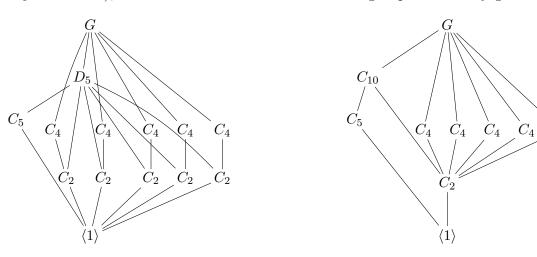


- (a) On a blank Cayley diagram, label nodes with the order of the corresponding elements. Then construct a cycle diagram, labeled by group elements.
- (b) Construct a subgroup lattice and label each edge with the corresponding index.
- (c) Find the left and right cosets of the subgroups $\langle r \rangle$ and $\langle s \rangle$, and their normalizers.
- (d) Partition the subgroups into conjugacy classes, and denote this on your lattice.

- 3. In this problem, you will construct the semidirect product $C_9 \rtimes C_3$. Recall that $\operatorname{Aut}(C_9)$ was constructed on the previous assignment.
 - (a) Find all possible labeling maps $\theta \colon C_3 \to \operatorname{Aut}(C_9)$.
 - (b) Construct a nonabelian semidirect product of $C_9 = \langle r \rangle$ with $C_3 = \langle s \rangle$, using a labeling map that makes the Cayley diagram less tangled. Include a Cayley diagram of C_3 with the nodes labeled by $\theta(s^j)$, and a Cayley diagram of $C_9 \rtimes_{\theta} C_3$, with the nodes labeled by $r^i s^j$.
 - (c) Repeat the previous problem but for the group $G = C_9 \rtimes C_3$. It is helpful to know that it has four subgroups of order 9 and four subgroups of order 3.
- 4. Consider two semidirect products of C_5 with C_4 , whose Cayley diagrams are shown below.



- (a) On blank Cayley diagrams, label the order of each element. Then construct a cycle diagram, with the nodes labeled by group elements.
- (b) The subgroup lattices of these two groups are shown below, not necessarily in the right order. Determine which lattice corresponds to which Cayley diagram (with justification), and then re-draw them with the subgroups written by generators.



(c) Determine which group each of these is isomorphic to, and which elements a and b correspond to. Recall that there are only three nonabelian groups of order 20:

$$D_{10} = \left\langle r, f \mid r^{10} = f^2 = 1, rfr = f \right\rangle, \qquad \operatorname{Dic}_{10} = \left\langle r, s \mid r^{10} = s^4 = 1, r^5 = s^2 \right\rangle,$$
$$\operatorname{AGL}_1(\mathbb{Z}_5) = \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle \leq \operatorname{GL}_2(\mathbb{Z}_5).$$

Write a presentation for both groups in this problem, in terms of a and b.

- (d) Construct the subgroup lattice for $G = D_{10}$. It helps to think of the subgroups geometrically there are two subgroups isomorphic to D_5 , unique cyclic subgroups of orders 10 and 5, five subgroups isomorphic to V_4 , and 11 subgroups of order 2.
- (e) For each of the diagrams below, determine whether it is the Cayley diagram of a group. If yes, write a presentation and determine whether it is isomorphic to D_{10} , Dic_{10} , or $AGL_1(\mathbb{Z}_5)$. If no, explain why.

