1. Let G be the semiabelian group of order 16, defined by the presentation

$$
\mathrm{SA}_{8}=\left\langle r, s \mid r^{8}=s^{2}=1, s r s=r^{5}\right\rangle
$$

A Cayley diagram and subgroup lattice are shown below.

(a) The subgroups $V=\left\langle r^{4}, s\right\rangle, H=\left\langle r^{2} s\right\rangle, K=\left\langle r^{2}\right\rangle$, and $N=\left\langle r^{4}\right\rangle$ are all normal. For the first three, highlight the cosets on a fresh Cayley diagram by colors.
(b) Construct a Cayley table for the quotient of G by each of these subgroups. Then draw a Cayley diagram for each, labeling the nodes with elements (i.e., cosets).
(c) Let $N=\left\langle r^{4}\right\rangle$. The shaded region below shows an order-4 cyclic subgroup of G / N, generated by the element $r N$, and how the union of these four cosets is the order- 8 subgroup $\langle r\rangle$ of G. Construct analogous tables for the other five non-trivial proper subgroups of G / N, and then draw the subgroup lattice of G / N.

$r^{3} N$	$r^{3} s N$
$r^{2} N$	$r^{2} s N$
$r N$	$r s N$
N	$s N$

$\langle r N\rangle \leq G / N$

r^{3}	r^{7}	$r^{3} s$	$r^{7} s$
r^{2}	r^{6}	$r^{2} s$	$r^{6} s$
r	r^{5}	$r s$	$r^{5} s$
1	r^{4}	s	$r^{4} s$

$\langle r\rangle / N \leq G / N$

r^{3}	r^{7}	$r^{3} s$	$r^{7} s$
r^{2}	r^{6}	$r^{2} s$	$r^{6} s$
r	r^{5}	$r s$	$r^{5} s$
1	r^{4}	s	$r^{4} s$

$\langle r\rangle \leq G$
(d) For each subgroup M / N from Part (c), determine what the quotient of G / N (order 8) by M / N (order 4 or 2) is isomorphic to. Justify your answer.
(e) One step of Part (c) consisted of starting with G, taking the quotient by N, and then taking the subgroup generated by $r^{2} N$ and $s N$. Compare and contrast this to doing these steps in the reverse order. That is: start with G, first take the subgroup $\left\langle r^{2}, s\right\rangle$, and then take the quotient by N.
(f) Repeat Part (c) for subgroups $V=\left\langle r^{4}, s\right\rangle, H=\left\langle r^{2} s\right\rangle$, and $K=\left\langle r^{2}\right\rangle$ of G. This time, include the trivial and proper subgroups for each.
2. Show that there is no embedding $\phi: \mathbb{Z}_{n} \hookrightarrow \mathbb{Z}$.
3. All of the following can be done by defining an explicit map, showing that it is a homomorphism, and a bijection.
(a) Show that $A \times B \cong B \times A$.
(b) Show that $x H x^{-1} \cong H$, for any $H \leq G$. Conclude that $|x y|=|y x|$ for any $x, y \in G$.
(c) Show that $\left(\mathbb{Q}^{*}, \cdot\right) \cong\left(\mathbb{Q}^{+}, \cdot\right) \times C_{2}$. Recall that \mathbb{Q}^{*} and \mathbb{Q}^{+}are the nonzero and positive rational numbers, respectively, and $C_{2}=\{1,-1\}$.
4. Let $\phi: G \rightarrow H$ be a homomorphism, and $N \unlhd H$.
(i) Show that the set $\phi^{-1}(N):=\{g \in G \mid \phi(g) \in N\}$ is a subgroup of G.
(ii) Show that $\phi^{-1}(N)$ is a normal subgroup of G.
(iii) Show by example that if $M \unlhd G$, then $\phi(M)$ need not be a normal subgroup of H.
5. In this exercise, you will show that if A and B are normal subgroups and $A B=G$, then

$$
G /(A \cap B) \cong(G / A) \times(G / B) .
$$

(a) Consider the following map:

$$
\phi: A B \longrightarrow(G / A) \times(G / B), \quad \phi(g)=(g A, g B) .
$$

Show that ϕ is a homomorphism.
(b) Show that ϕ is surjective. That is, given any $\left(g_{1} A, g_{2} B\right)$, show that there is some $g=a b \in A B$ such that $\phi(g)=\left(g_{1} A, g_{2} B\right)$. [Hint: Try $g=a_{2} b_{1}$; show this works.]
(c) Find $\operatorname{Ker}(\phi)$ [you need to verify your answer is correct] and then apply the fundamental homomorphism theorem.

