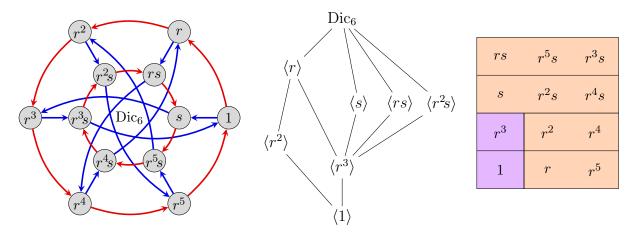
1. In this problem, we will explore the actions of the dicyclic group Dic_6 and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.



(a) The right action of Dic_6 on itself by conjugation is defined by the homomorphism

 $\phi: \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg.$

Draw the action diagram and construct the fixed point table. Find stab(s) for each $s \in S$, fix(g) for each $g \in G$, as well as Ker(ϕ) and Fix(ϕ).

(b) The inner automorphism group

Inn(Dic₆)
$$\cong$$
 Dic₆ /Z(Dic₆) = Dic₆ / $\langle r^3 \rangle \cong D_3$

also acts on Dic₆. Construct the action diagram and fixed point table of this action and find stab(s), fix(g), Ker(ϕ) and Fix(ϕ). Then draw the subgroup lattice of Inn(Dic₆) = $\langle \varphi_r, \varphi_s \rangle$, where $\varphi_g \colon x \mapsto g^{-1}xg$.

(c) The automorphism group of Dic_6 is $\text{Aut}(\text{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$ acts on Dic_6 , where ω is the outer automorphism defined by

$$\omega \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Dic}_6, \qquad \omega(r) = r, \quad \omega(s) = s^{-1} = r^3 s,$$

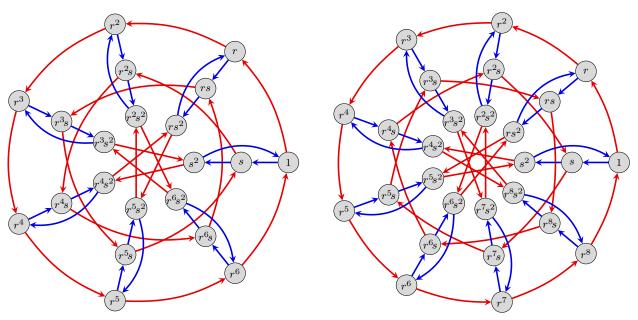
that "reverses" the blue arrows. Make a diagram showing how each automorphism permutes the elements of Dic₆. Then construct the action diagram, fixed point table, and find stab(s), fix(g), Ker(ϕ) and Fix(ϕ).

- (d) The automorphism group $\operatorname{Aut}(\operatorname{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$ is isomorphic to D_6 . Construct a Cayley diagram and subgroup lattice using these generators.
- (e) The group Aut(Dic₆) also acts on the conjugacy classes of Dic₆. Construct the action diagram, fixed point table, and find stab(s), fix(g), $Ker(\phi)$ and $Fix(\phi)$.
- (f) The group Dic_6 acts on its subgroups by conjugation, via the homomorphism

 $\phi: \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } H \mapsto g^{-1} H g.$

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find $\operatorname{stab}(s)$, $\operatorname{fix}(g)$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.

2. Carry out the following steps for the groups $C_7 \rtimes C_3$ and $C_9 \rtimes C_3$, whose Cayley diagrams are shown below.

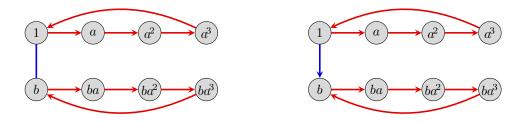


- (a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find $\operatorname{stab}(H)$ for each $H \leq G$, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
- (b) Let G act on the right cosets of $H = \langle s \rangle$, via the homomorphism

$$\phi \colon G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \operatorname{the permutation that sends each } Hx \mapsto Hxg.$$

Construct the action diagram, fixed point table, and find $\operatorname{stab}(Hx)$ for each right coset, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.

3. Let G be an unknown group of order 8. If it has no element of order 4, then $g^2 = e$ for all $g \in G$, and so G must be abelian. Otherwise, it has a "partial Cayley diagram" like one of the following:



Find all possibilities for finishing each diagram, and label by isomorphism type.

4. Let $\phi: G \to \operatorname{Perm}(S)$ be a *left* group action. Prove the orbit-stabilizer theorem by constructing a bijection between $\operatorname{orb}(s)$ and *left* cosets of $H = \operatorname{stab}(s)$. Use analogous notational conventions from lecture, e.g., $\phi(g)$.