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1. Loosely speaking, the Sylow theorems tell us that (1) all p-subgroups come in a single
“p-subgroup tower”, (2) the “top” of these towers are a single conjugacy class, and (3)
the size of this class is 1 mod p. This is illustrated below with the groups of order 12.
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Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.

2. The subgroup lattice of the symmetric group S4 is shown below.
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(a) Partition the subgroups into conjugacy classes. Carefully and completely justify your
answers using the Sylow theorems, without making reference to cycle type.

(b) For each conjugacy class clG(H), find the isomorphism type of the normalizer NG(H).

(c) Using the GroupNames website, make a table of all 15 groups of order 24, the number
of subgroups, and basic information about their Sylow p-subgroups (number and
isomorphism type). Write down at least one observation that you find interesting.
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(d) Which groups are not an internal direct or semidirect product of Sylow subgroups?

(e) None of the following groups are among the 15 listed on GroupNames: D6 × C2,
C6 oC4, C6 oC2

2 , C4 oC6, C3 oC3
2 , C3

2 oC3, C
2
2 oC6, C3 oQ8, Q8 oC3, C4 o S3.

Find which of the 15 each is isomorphic to, and add this this to your table under
the “alias(es)” column.

3. Show that there are no simple groups of the following order.

(i) 45 = 32 · 5 (ii) 56 = 23 · 7 (iii) 108 = 22 · 33 (iv) pn (n > 1).

[Hint : For Part (d), first use a suitable group action to show that |Z(G)| > 1.]

4. After A5, the next smallest nonabelian simple group is G = GL3(Z2), the invertible 3× 3
binary matrices. It has order 168 = 23 · 3 · 7, and its conjugacy poset is shown below.
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(a) Color-code the p-subgroups, then draw arrows from each cl(H) to cl(N(H)).

(b) Show that there is a non-trivial homomorphism φ : GL3(Z2)→ S8.

(c) Show that this homomorphism must be an embedding, and conclude that the order-
40320 group S8 has at least one subgroup isomorphic to GL3(Z2).

(d) Show that every such subgroup of S8 additionally must be contained in A8.
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5. The alternating group A6 is the third smallest nonabelian simple group. It has order
6!/2 = 360 = 23 · 32 · 5, and 501 subgroups contained in 22 conjugacy classes.
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(a) Distinguish the p-subgroups by colors on the lattice.

(b) For each non-singleton conjugacy class cl(H), draw an arrow from it to cl(N(H)),
the conjugacy class of its normalizer.

(c) Now, let G be an unknown group of order 90 = 2 · 32 · 5.

(i) Show that if G has a non-normal Sylow 5-subgroup, then there is be a non-
trivial homomorphism φ : G→ S6.

(ii) Show that if φ(G) is contained in the simple group A6, then φ cannot be
injective.

(iii) Explain why this implies that G cannot be simple.

(iv) Find all possibilities for n2, n3, and n5, where np is the number of Sylow p-
subgroups of G. Then, using GroupNames or LMFDB, make a list of all groups
of order 90, and write down the actual vaules of n2, n3, and n5 for each, as well
as the isomorphism type of the Sylow 3-subgroup(s) – either C9 or C2

3 . Does
anything surprise you about this?
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