1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(x^2 + x + 2)$. Examples for the finite fields

$$\mathbb{F}_4 \cong \mathbb{Z}_2[x]/(x^2 + x + 1)$$
 and $\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(x^3 + x + 1)$

are shown below.

 \times

1

 \boldsymbol{x}

x+1

1

1

x

x+1

x

x

x+1

1

x+1

x+1

1

x

×	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	x ² +x+1
1	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	x ² +x+1
x	x	x^2	$x^2 + x$	x+1	1	x ² +x+1	$x^2 + 1$
x + 1	x+1	$x^2 + x$	$x^2 + 1$	x ² +x+1	x^2	1	x
x^2	x^2	x+1	$x^{2}+x+1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 + 1$	$x^2 + 1$	1	x^2	x	x ² +x+1	x+1	$x^2 + x$
$x^2 + x$	$x^2 + x$	x ² +x+1	1	$x^2 + 1$	x+1	x	x^2
x ² +x+1	x ² +x+1	$x^2 + 1$	x	1	$x^2 + x$	x^2	x + 1

Math 4120 | Visual Algebra | Fall 2022 | M. Macauley

- 2. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1/2 \notin A$.
- 3. In this problem, we will explore several "radicals" of an ideal I in a commutative ring R.
 - (a) The *radical* of $I \subseteq R$ is the set

$$\sqrt{I} := \{ x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N} \},\$$

and I is a radical ideal if $\sqrt{I} = I$.

- (i) Show that \sqrt{I} is an ideal containing I.
- (ii) Find the radicals of all ideals of the rings $\mathbb{Z}_6 \times \mathbb{Z}_4$, $\mathbb{Z}_8 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_2$, and \mathbb{Z}_{24} . Denote these on the subring lattices by drawing an arrow from each I to \sqrt{I} , and find the nilradical $\mathfrak{N}_{R/I} = \sqrt{I}/I$.
- (b) The Jacobsen radical of I, denoted jac(I), is the intersection of all maximal ideals that contain I.
 - (i) Show that jac(I) is an ideal.
 - (ii) Find the Jacobsen radical of all proper ideals of the rings \mathbb{Z}_{24} , $\mathbb{Z}_6 \times \mathbb{Z}_4$, $\mathbb{Z}_6 \times \mathbb{Z}_2$, and $\mathbb{Z}_8 \times \mathbb{Z}_2$. Denote these by drawing an arrow from I to jac(I) on a fresh copy of the lattices.
- (c) The nilradical and Jacobson radical of R, denoted $\mathfrak{N}_R := \sqrt{0}$ and $\operatorname{Jac}(R) := \operatorname{jac}(0)$, are the intersection of the prime and maximal ideals, respectively. Mark these on the subring lattices.

- 4. Let R be a commutative ring with 1. An ideal $I \subsetneq R$ is primary if $ab \in I$ implies $a \in I$ or $b^n \in I$ for some $n \in \mathbb{N}$, and prime if this holds for n = 1.
 - (a) Show that an ideal I is prime if and only if it is primary and radical.
 - (b) Show that the radical of a primary ideal is prime.
 - (c) Suppose that R is a PID. Characterize its nonzero primary ideals.
 - (d) Show that I is primary if and only if all zero-divisors in R/I are nilpotent.
 - (e) Find an example of a primary ideal that is not generated by a prime power power.