1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_{9} \cong$ $\mathbb{Z}_{3}[x] /\left(x^{2}+x+2\right)$. Examples for the finite fields

$$
\mathbb{F}_{4} \cong \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \quad \text { and } \quad \mathbb{F}_{8} \cong \mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)
$$

are shown below.

2. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1 / 2 \notin A$.
3. In this problem, we will explore several "radicals" of an ideal I in a commutative ring R.
(a) The radical of $I \subseteq R$ is the set

$$
\sqrt{I}:=\left\{x \in R \mid x^{n} \in I \text { for some } n \in \mathbb{N}\right\},
$$

and I is a radical ideal if $\sqrt{I}=I$.
(i) Show that \sqrt{I} is an ideal containing I.
(ii) Find the radicals of all ideals of the rings $\mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{24}. Denote these on the subring lattices by drawing an arrow from each I to \sqrt{I}, and find the nilradical $\mathfrak{N}_{R / I}=\sqrt{I} / I$.
(b) The Jacobsen radical of I, denoted $\operatorname{jac}(I)$, is the intersection of all maximal ideals that contain I.
(i) Show that $\operatorname{jac}(I)$ is an ideal.
(ii) Find the Jacobsen radical of all proper ideals of the rings $\mathbb{Z}_{24}, \mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$. Denote these by drawing an arrow from I to jac (I) on a fresh copy of the lattices.
(c) The nilradical and Jacobson radical of R, denoted $\mathfrak{N}_{R}:=\sqrt{0}$ and $\operatorname{Jac}(R):=\operatorname{jac}(0)$, are the intersection of the prime and maximal ideals, respectively. Mark these on the subring lattices.

4. Let R be a commutative ring with 1 . An ideal $I \subsetneq R$ is primary if $a b \in I$ implies $a \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$, and prime if this holds for $n=1$.
(a) Show that an ideal I is prime if and only if it is primary and radical.
(b) Show that the radical of a primary ideal is prime.
(c) Suppose that R is a PID. Characterize its nonzero primary ideals.
(d) Show that I is primary if and only if all zero-divisors in R / I are nilpotent.
(e) Find an example of a primary ideal that is not generated by a prime power power.

