Supplemental material for Visual Algebra (Math 4120), HW 2

\#3(a): Cayley graph for the generalized quaternion group

$$
Q_{16}=\left\langle\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, j\right\rangle
$$

where $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{2 \pi i / 8}=\zeta_{8}$ is an $8^{\text {th }}$ root of unity.

\#3(a): Cayley graph for the generalized quaternion group $Q_{16}=$ $\left\langle\zeta_{8}, j\right\rangle$, where $\zeta_{8}=e^{2 \pi i / 8}$ is an $8^{\text {th }}$ root of unity.

\#3(a): Another way to lay out the Cayley graph for the generalized quaternion group

$$
Q_{16}=\left\langle\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, j\right\rangle
$$

where $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{2 \pi i / 8}=\zeta_{8}$ is an $8^{\text {th }}$ root of unity.

\#3(a): Another way to lay out the Cayley graph for the generalized quaternion group $Q_{16}=\left\langle\zeta_{8}, j\right\rangle$, where $\zeta_{8}=e^{2 \pi i / 8}$ is an $8^{\text {th }}$ root of unity.

\#3(b): Cayley table of a quotient of the generalized quaternion group

$$
Q_{16}=\left\langle\zeta_{8}, j\right\rangle, \quad \text { where } \quad \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{2 \pi i / 8}=\zeta_{8}
$$

by the subgroup $\left\langle\zeta^{4}\right\rangle=\langle-1\rangle=\{1,-1\}$.

