Math 8510, Midterm 1. October 12, 2022

1. (6 points) Let G be a group with a subgroup $H=\langle b, c\rangle$. No justification necessary, but be as specific as possible with your answers.
(a) If $a \in H$, then what is $\langle a, b, c\rangle$?
(b) If $a \notin H$ and $[G: H]=3$, then what is $\langle a, b, c\rangle$?
(c) If $a \notin H$, and $|G|=48$ and $|H|=6$, what are the possible orders of the subgroup $\langle a, b, c\rangle$?
2. (6 points) Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group and $V_{4}=\{e, v, h, v h\}$ be the Klein 4-group. Define a homomorphism $\phi: Q_{8} \rightarrow V_{4}$ by $\phi(i)=v$ and $\phi(j)=h$. Find the image of the remaining six elements.
$\phi(1)=\quad, \quad \phi(-1)=\quad, \quad \phi(k)=\quad, \quad \phi(-i)=\quad, \quad \phi(-j)=\quad, \quad \phi(-k)=$
3. (8 points) Draw the subgroup lattice of the dihedral group $D_{3}=\langle r, f| r^{3}=f^{2}=1, r f=$ $\left.f r^{2}\right\rangle$, with the subgroups listed by generators. Label each edge between $K \leq H$ with the corresponding index, $[H: K]$. Then partition the subgroups into conjugacy classes by circling them.
4. (8 points) Prove that there are no simple groups of order $|G|=63=3^{2} \cdot 7$.
5. (8 points) Let G be a group with center $Z=Z(G)$. Show that Z is a subgroup of G and that it is normal.
6. (8 points) Suppose a group G of order 35 acts on a set S of size 9 . Show that there must be a fixed point. Can you say something stronger?
7. (6 points) Finish the following definitions. Make sure you use terminology like "for all", where appropriate.
(a) The order of an element $g \in G$ is...
(b) A homomorphism ϕ from a group G to H is...
(c) If $N \unlhd G$, then the quotient group G / N is...
(d) The kernel of a homomorphism ϕ from G is...
(e) A subgroup N of G is normal if...
(f) The commutator $[x, y]$ of elements $x, y \in G$ is...
8. (16 points) Fill in the following blanks.
9. The smallest nonabelian group is \qquad .
10. A list of the groups of order 8 (up to isomorphism) is \qquad .
11. The permutation $(123)(456789) \in S_{9}$ has order \qquad , and its inverse is \qquad .
12. The alternating group A_{3} consists of the following elements: \qquad .
13. Two permutations in S_{n} are conjugate if and only if \qquad .
14. For any $n \geq 3, D_{n} \cong A \rtimes B$, a semidirect product of $A=$ \qquad with $B=$ \qquad .
15. An example of a minimal generating set of S_{5} of minimum size is \qquad .
16. The group $\operatorname{Aut}(\mathbb{Z})$ has order \qquad .
17. Let $H \leq G$ have index $[G: H]=n$. If G acts on the cosets of H by right-multiplication, then the action has \qquad orbit(s).
18. The kernel of a group action is the intersection of all \qquad .
19. The group D_{5} has \qquad Sylow 2-subgroups, all of order \qquad .
20. The kernel of the homomorphism $\phi: G \rightarrow \operatorname{Inn}(G)$, defined by $x \mapsto \varphi_{x}$ is \qquad .
21. If G^{\prime} is the commutator subgroup, then G / G^{\prime} is the largest \qquad of G.
22. (16 points) Answer the following about the extraspecial group $G=5_{-}^{1+2}$, a nonabelian group of order $125=5^{3}$, whose subgroup lattice appears below.

(a) Let H be the "rightmost" C_{5} subgroup. Explain why it must be normal.
(b) What is the quotient G / H isomorphic to, and why?
(c) Which subgroup is the normalizer, $N_{G}(H)$?
(d) Let K be the "leftmost" C_{5} subgroup, which you may assume is not normal. What is its normalizer, $N_{G}(K)$?
(e) Partition the subgroups into conjugacy classes G by circling them.
(f) Is G isomorphic to a direct or semidirect product of any of its proper subgroups, and why?
(g) Mark the derived series on the lattice, i.e., write $G^{(0)}=, G^{\prime}=, G^{\prime \prime}=, \ldots$ Is G solvable?
(h) Which subgroup must be $Z(G)$, and why? [Hint: G is a p-group. Also, you may use a result we mentioned in passing, but did not prove: if $G / Z(G)$ is cyclic, then G is abelian.]
(i) Determine the centralizer $C_{G}(x)$, where $K=\langle x\rangle$. Justify your answer.
(j) Determine the size of the conjugacy class $\mathrm{cl}_{G}(x)$, where $K=\langle x\rangle$.
(k) Find all N and Q (excluding G and 1) for which G is an extension of Q by N. Write each answer as an exact sequence $1 \rightarrow N \hookrightarrow G \rightarrow Q \rightarrow 1$.)
23. (8 points) Prove the diamond theorm: if $A, B \unlhd G$, then $A B / A \cong B /(A \cap B)$. You may assume that $A \unlhd A B$ and $(A \cap B) \unlhd B$.
24. (10 points) Fix a subgroup $H \leq G$, and define the map

$$
\phi:\left\{\text { left cosets of } N_{G}(H)\right\} \longrightarrow\{\text { conjugates of } H\}, \quad \phi: g N_{G}(H) \longmapsto g H g^{-1} .
$$

(a) Show that this map is well-defined and a bijection.
(b) Derive the formula $|G|=\left|\operatorname{cl}_{G}(H)\right| \cdot\left|N_{G}(H)\right|$, for any $H \leq G$.

