Math 8510, Midterm 2. November 30, 2022

- 1. (6 points) Complete the following sentences of formal mathematical definitions. Make sure you use terminology like \forall ("for all") or \exists ("there exists"), where appropriate.
 - (a) A ring R is...
 - (b) A zero divisor of a commutative ring R is...
 - (c) A left ideal I of a ring R is...
 - (d) A homomorphism ϕ from a ring R to S is...
 - (e) The *kernel* of a ring homomorphism ϕ from R is...
 - (f) An ideal P of a commutative ring R is *prime* if ...
- 2. (8 points) Let $\mathbb{Z}[x]$ and $\mathbb{Z}[[x]]$ denote the rings of polynomials, and formal power series, respectively:

 $\mathbb{Z}[x] = \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{Z}, \ n \in \mathbb{Z}\}, \qquad \mathbb{Z}[[x]] = \{a_0 + a_1 x + a_2 x^2 + \dots \mid a_i \in \mathbb{Z}\}.$

Do you expect either of these rings to be isomorphic to a *product* in the category **Ring**? What about a *co-product*? You do *not* need to prove anything – your answer should be short, informal, but convincing.

3. (16 points) The subgroup lattice of the generalized quaternion group $G = Q_{32}$ is shown below.

- (a) Determine the isomorphism types of the following quotient groups:
 - i. $G/\langle r \rangle \cong$ ii. $G/\langle r^2 \rangle \cong$ iii. $G/\langle r^4 \rangle \cong$ iv. $G/\langle r^8 \rangle \cong$
- (b) Annotate the ascending central series $\langle 1 \rangle = Z_0 \leq Z_1 \leq \cdots$ and descending central series $Q_{32} = L_0 \geq L_1 \geq \cdots$ on the subgroup lattice. Then fill in the blanks for each distinct subgroup (i.e., until the series stabilizes.) Don't just write the definition of Z_i and L_i .

(c) Is Q_{32} nilpotent? Why or why not?

4. (8 points) Show that if a left ideal I of R contains a unit, then I = R.

5. (8 points) Show that every field is a simple ring.

- 6. (12 points) Let $\phi \colon R \to S$ be a ring homomorphism.
 - (a) Show that $\operatorname{Ker}(\phi)$ is an ideal of R.
 - (b) Prove the fundamental homomorphism theorem: $R/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$.

You can and should assume *all* results from group theory, e.g., the FHT for groups. [*Remark*: Both parts should be very short. One aspect of this problem is recognizing and understanding what you have to prove.]

- 7. (12 points) Let S, S_1 , and S_2 be nonempty sets.
 - (a) Formally define what it means for a group F to be *free* on S, by a co-universal property. Include a commutative diagram that illustrates this.

(b) Prove that any two free groups on S are isomorphic.

(c) For i = 1, 2, let F_i be a free group on S_i . Prove or disprove: The group $F = F_1 \times F_2$ is a free group on the set $S = (S_1 \times \{1\}) \cup (\{1\} \times S_2)$.

- 8. (20 points) Fill in the following blanks.
 - 1. The smallest non-nilpotent group is
 - 2. In the category of sets, suppose that |A| = 6 and |B| = 10. Then the size of their *product* is ______, and the size of their *co-product* is ______.
 - 3. Every subgroup of a free group is _____
 - 4. The order of the co-product of \mathbb{Z}_4 with \mathbb{Z}_6 is _____.
 - 5. A group presentation for the free product of $\mathbb{Z}_2 = \langle a \rangle$ with $D_3 = \langle r, f \rangle$ is
 - 6. The co-product of \mathbb{Z} with \mathbb{Z} is ______ in **Grp** and ______ in **Ab**.

7. A *functor* is a structure-preserving map between two

- 8. The group $\mathbb{Z} \times \mathbb{Z}$ is the quotient of the free group F_S on $S = \{a, b\}$ by the smallest normal subgroup containing .
- 9. The ring \mathbb{Z} has _____ unit(s), _____ zero divisor(s), and _____ element(s) that are neither.

10. In \mathbb{Z} , the principal ideal I = (a, b) is generated by k =_____.

- 11. The ideal I = (4) in the polynomial ring $R = \mathbb{Q}[x]$ is _____.
- 12. A commutative ring is an integral domain iff the zero ideal is ______.
- 13. An ideal I of R is maximal iff for all ideals J satisfying $I \subseteq J \subseteq R$, ______.
- 14. The quotient R/I of a commutative ring is a field if and only if ______.

15. An example of a (non-zero) non-maximal prime ideal is ______.

16. If $G_1 = \langle S_1 | R_1 \rangle$ and $G_2 = \langle S_2 | R_2 \rangle$ are groups with $S_1 \supseteq S_2$ and $R_1 \subseteq R_2$, then

9. (10 points) Prove the co-universal property for quotients:

Let G and H be groups, $N \leq G$, and $\pi: G \twoheadrightarrow G/N$ the canonical quotient map. If $f: G \to H$ is a homomorphism whose kernel contains N, then there exists a unique homomorphism $h: G/N \to H$ such that $h \circ \pi = f$.

Include a commutative diagram that illustrates this.

10. (Extra credit, 1 point) With the birth of my son Felix exactly six weeks ago today, my family became a group of order 4. What prominent historical mathematician shares his name?