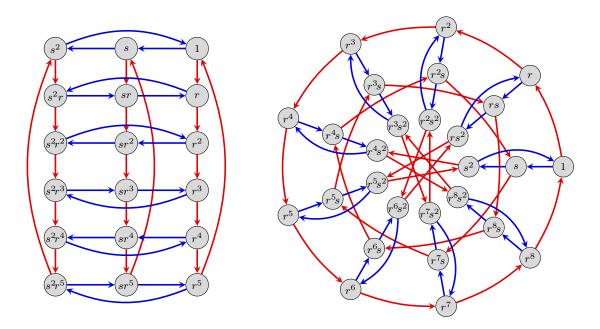
- 1. Cayley graphs of two groups are shown below. Carry out the following steps for each group.
 - (a) Write a presentation using the generators in the Cayley graph.
 - (b) Find the left and right cosets of the following subgroups $H = \langle r \rangle$, $K = \langle s \rangle$, $L = \langle r^3 \rangle$.
 - (c) Find the normalizers of H, K, and L. Write them first as a union of cosets, and then as a subgroup by generator(s). Determine the isomorphism type of each.
 - (d) Find all conjugate subgroups of H, K, and L. Write each group by generator.
 - (e) Construct the subgroup lattice, and write each subgroup with a minimal generating set. Denote the conjugacy classes of subgroups by dashed circles.
 - (f) What is the center, Z(G)?
 - (g) Find this group on the LMFDB (https://beta.lmfdb.org/Groups/). What is its label, and what other groups is it isomorphic to? Write down one interesting fact about it that you did not already know.



2. If $A, B \leq G$ and $x \in G$, define the (A, B)-double coset to be the set

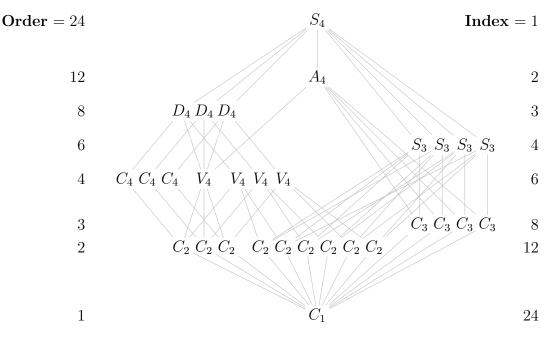
$$AxB := \{axb \mid a \in A, b \in B\}.$$

- (a) Show that G is the disjoint union of its (A, B)-double cosets.
- (b) Show that if A and B are finite, then $|AxB| = [x^{-1}Ax : x^{-1}Ax \cap B] \cdot |B|$.
- (c) Find a Cayley graph of a group G of order at least 16, and pick two subgroups, A and B, not both normal, that have more than two (A, B)-double cosets. Partition G by the double cosets, and highlight these on the Cayley graph by coloring the nodes. Also partition G by the left and right cosets of AB, if this is a subgroup. Please use an example that is different from all of your homework collaborators.

3. The *centralizer* of an element $h \in G$ is the set of elements that commute with it:

$$C_G(h) := \{g \in G \mid gh = hg\}.$$

- (a) Find the centralizers of the elements r, s, and r^3 in both groups from Problem 1.
- (b) Show that $C_G(H) \leq N_G(H)$.
- (c) Let $h \in G$ with $[G : \langle h \rangle] = n < \infty$. Show that there are exactly $[G : C_G(h)]$ elements conjugate to h, by constructing a map from the right cosets of $C_G(h)$ to the conjugacy class $cl_G(h)$ of h, and showing that it is a well-defined bijection.
- (d) Partition both groups from Part (a) by conjugacy classes.
- 4. Let G be a group, not necessarily finite, and $H \leq G$ a subgroup.
 - (a) Show that the subgroup $N := \bigcap_{x \in G} x H x^{-1}$ is normal in G.
 - (b) Show that every normal subgroup $K \trianglelefteq G$ contained in H is contained in N. In other words, N is the *largest normal subgroup* of G contained in H.
 - (c) Show that if $[G:N] < \infty$ and $|H| = \infty$, then $|H \cap N| > 1$.
- 5. Answer the following questions about the symmetric and alternating groups. The subgroup lattice of $G = S_4$ is shown below.



- (a) Partition the subgroups of S_4 into conjugacy classes, and justify your answer. You can assume that two elements are conjugate iff they have the same cycle type.
- (b) For each $cl_{S_4}(H)$, find the isomorphism type of the normalizer, $N_{S_4}(H)$.
- (c) Compute the centralizers of e_1 , (12), (123), (1234), and (12)(34) in S_4 .
- (d) Partition the elements of A_4 by conjugacy class. Then pick one element σ from each class, and find its centralizer, $C_{A_4}(\sigma)$.
- (e) For each of the following elements $\sigma \in S_5$, find $|cl_{S_5}(\sigma)|$, and then its centralizer $C_{S_5}(\sigma)$: e, (12), (123), (1234), (12345), (12)(34), and (123)(45) in S_5 .