1. Establish the following isomorphisms by defining an explict map and proving that it is a bijective homomorphism.
(a) $H \cong x H x^{-1}$, for any subgroup $H \leq G$ and fixed $x \in G$.
(b) $\left(\mathbb{Q}^{*}, \cdot\right) \cong\left(\mathbb{Q}^{+}, \cdot\right) \times C_{2}$, where $C_{2}=\{1,-1\}$.
2. Let G be the semiabelian group of order 16, defined by the presentation

$$
\mathrm{SA}_{8}=\left\langle r, s \mid r^{8}=s^{2}=1, s r s=r^{5}\right\rangle,
$$

A Cayley diagram and subgroup lattice are shown below.

(a) The subgroups $V=\left\langle r^{4}, s\right\rangle, H=\left\langle r^{2} s\right\rangle, K=\left\langle r^{2}\right\rangle$, and $N=\left\langle r^{4}\right\rangle$ are all normal. Highlight their cosets on a fresh Cayley diagram by colors.
(b) Construct a Cayley table for the quotient of G by each of these subgroups. Then draw a Cayley diagram for each, labeling the nodes with elements (i.e., cosets).
(c) Let $N=\left\langle r^{4}\right\rangle$. The shaded region below shows an order-4 cyclic subgroup of G / N, generated by the element $r N$, and how the union of these four cosets is the order- 8 subgroup $\langle r\rangle$ of G. Construct analogous tables for the other five non-trivial proper subgroups of G / N, and then draw the subgroup lattice of G / N.

$r^{3} N$	$r^{3} s N$
$r^{2} N$	$r^{2} s N$
$r N$	$r s N$
N	$s N$

$\langle r N\rangle \leq G / N$

r^{3}	r^{7}	$r^{3} s$	$r^{7} s$
r^{2}	r^{6}	$r^{2} s$	$r^{6} s$
r	r^{5}	$r s$	$r^{5} s$
1	r^{4}	s	$r^{4} s$

$\langle r\rangle / N \leq G / N$

r^{3}	r^{7}	$r^{3} s$	$r^{7} s$
r^{2}	r^{6}	$r^{2} s$	$r^{6} s$
r	r^{5}	$r s$	$r^{5} s$
1	r^{4}	s	$r^{4} s$

$\langle r\rangle \leq G$
(d) Repeat the previous part for the subgroups H, K, and V, but include the trivial and nonproper subgroups.
3. Suppose $A, B \leq G$, and that A normalizes B. That is, $A \leq N_{G}(B)$.
(a) Show that $A B \leq G$.
(b) Show that $B \unlhd A B$ and $A \cap B \unlhd A$.
(c) Show that $A /(A \cap B) \cong A B / B$.
(d) Show that if A and B are both normal with $G=A B$, then

$$
G /(A \cap B) \cong(G / A) \times(G / B)
$$

4. Prove the remaining parts of the correspondence theorem. That is, if $N \leq H \leq G$ is a chain of subgroups and $N \unlhd G$, then show all of the following.
(a) $H / N \unlhd G / N$ if and only if $H \unlhd G$
(b) $[G / N: H / N]=[G: H]$
(c) $H / N \cap K / N=(H \cap K) / N$
(d) $\langle H / N, K / N\rangle=\langle H, K\rangle / N$
(e) H / N is conjugate to K / N in G / N if and only if H is conjugate to K in G.
5. The semidirect product $C_{7} \rtimes C_{3}$ can be constructed in a "visual" manner by starting with a Cayley graph of $\operatorname{Aut}\left(C_{7}\right) \cong U_{6} \cong C_{6}$, shown below, with the nodes labeled by "rewirings" of a Cayley graph of C_{7}.

Next, we define the "labeling map," a homomorphism

$$
\theta: C_{3} \longrightarrow \operatorname{Aut}\left(C_{7}\right), \quad \theta: b^{k} \longmapsto \phi^{2 k}
$$

which tells us how to "stick in" rewired copies of $A=C_{7}$ into "inflated" nodes of $B=C_{3}$.

By connecting up the corresponding nodes, we get a Cayley graph for $C_{7} \rtimes C_{3}$, like the following.

(a) Carry out analogous steps to construct Cayley graphs of $C_{9} \rtimes C_{3}$ and $C_{3} \rtimes C_{6}$, and then write down a presentation for each group. [Hint: There are two homomorphisms $C_{3} \rightarrow \operatorname{Aut}\left(C_{9}\right)$ that will work, but one of them leads to a much less tangled diagram.]
(b) In each case, this group is isomorphic to the Cartesian product $G=A \times B$ with a different binary operation than the direct product. Give an explicit formula for $\left(a^{i}, b^{j}\right) *\left(a^{k}, b^{\ell}\right)$ using this new binary operation.

