
Homework 5 | Due September 30 (Friday) 1

1. Loosely speaking, the Sylow theorems tell us that (1) all p-subgroups come in a single
“p-subgroup tower”, (2) the “top” of these towers are a single conjugacy class, and (3)
the size of this class is 1 mod p. This is illustrated below with the groups of order 12.
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Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.

2. After A5, the next smallest nonabelian simple group is G = GL3(Z2), the invertible 3× 3
binary matrices. It has order 168 = 23 · 3 · 7, and its conjugacy poset is shown below.
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(a) Color-code the p-subgroups, then draw arrows from each cl(H) to cl(N(H)).

(b) Show that there is a non-trivial homomorphism φ : GL3(Z2)→ S8.

(c) Show that this homomorphism must be an embedding, and conclude that the order-
40320 group S8 has at least one subgroup isomorphic to GL3(Z2).

(d) Show that every such subgroup of S8 additionally must be contained in A8.
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3. The alternating group A6 is the third smallest nonabelian simple group. It has order
6!/2 = 360 = 23 · 32 · 5, and 501 subgroups contained in 22 conjugacy classes.
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(a) Distinguish the p-subgroups by colors on the lattice.

(b) For each non-singleton conjugacy class cl(H), draw an arrow from it to cl(N(H)),
the conjugacy class of its normalizer.

(c) Now, let G be an unknown group of order 90 = 2 · 32 · 5.

(i) Show that if G has a non-normal Sylow 5-subgroup, then there is be a non-
trivial homomorphism φ : G→ S6.

(ii) Show that if φ(G) is contained in the simple group A6, then φ cannot be
injective.

(iii) Explain why this implies that G cannot be simple.

(iv) Give an alternate proof that groups of order 90 are not simple, using the Sylow
theorems.

(v) Find all possibilities for n2, n3, and n5, where np is the number of Sylow p-
subgroups of G. Then, using GroupNames or LMFDB, make a list of all groups
of order 90, and write down the actual vaules of n2, n3, and n5 for each, as well
as the isomorphism type of the Sylow 3-subgroup(s) – either C9 or C2

3 . Does
anything surprise you about this?
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4. Show that there are no simple groups of the following order:

(i) pn, (n > 1), (ii) pq, (p, q prime) (iii) 56, (iv) 108.

5. Let P be a Sylow p-subgroup of G.

(a) If P �H �G for H 6= P , show that G = NH, where N = NG(P ).

(b) Show that if x, y ∈ CG(P ) are conjugate in G, then they are conjugate in NG(P ).

6. Let G be a group, not necessarily finite, and let A and B be subgroups of finite index,
but not necessarily normal. In particular, we cannot assume that AB is a group, but as
an (A,B)-double coset, it is a disjoint union of cosets of A.

(a) Let B act on S = AB\A =
{
Ax | x ∈ AB

}
via the homomorphism

φ : G −→ Perm(S) , φ(g) = the permutation that sends each Ax 7→ Axg.

Use the orbit-stabilizer theorem to show that [A : A ∩B] = [AB : B].

(b) Show that [G : A ∩ B] ≤ [G : A][G : B]. Give an explicit example of where the
inequality is strict.

(c) Show that there is some N �G contained in both A and B with [G : N ] ≤ ∞.

(d) Use Part (a) and the Sylow theorems to show that there are no simple groups of
order 96 = 25 · 3. [Hint : First, show that the intersection of two Sylow 2-subgroups
must have order 16, and then consider its normalizer.]
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