1. The short five lemma says that given the commutative diagram of exact sequences shown at left, if ν and κ are isomorphisms, then γ is as well.

- (a) Prove the short five lemma.
- (b) Two extentions $N_i \stackrel{\iota_i}{\hookrightarrow} G_i \stackrel{\pi_i}{\to} Q_i$ are said to be *equivalent* if they are related via a commutative diagram, like the one above (left). Two extensions of Q by N are equivalent if they are related by a commutative diagram like the one on the right. Up to *isomorphism*, there are four extensions of $Q = V_4$ by $N = C_2$, as shown below.

However, up to equivalence, there are more than four. For example, finding all extensions $C_2 \stackrel{\iota}{\hookrightarrow} D_4 \stackrel{\pi}{\to} V_4$ amounts to finding all $\gamma \in \operatorname{Aut}(D_4)$ that makes the diagram commute. Since each γ fixes the cosets $\{1, r^2\}$ and $\{r, r^3\}$, the following diagram illustrates two quotients that cannot be equivalent.

Each of the three choices of the image $\pi(r) \in \{h, v, hv\}$ characterizes an extension $C_2 \stackrel{\iota}{\hookrightarrow} D_4 \stackrel{\pi}{\to} V_4$. Examples of these are shown below.

Carry out the previous steps, including the visuals, to classify the extensions $C_2 \xrightarrow{\iota} C_4 \times C_2 \xrightarrow{\pi} V_4$, and then do the same for the extensions $C_2 \xrightarrow{\iota} Q_8 \xrightarrow{\pi} V_4$.

2. A short exact sequence of groups is *left split* if there is a "backwards map" $\alpha: G \to N$ for which $\alpha \circ \iota = \mathrm{Id}_N$, like the following shows.

$$1 \longrightarrow N \xrightarrow[\tau_{\neg}]{\iota} G \xrightarrow{\pi} H \longrightarrow 1$$

A picture of a left split exact sequence $1 \to V_4 \to C_6 \times C_2 \to C_3 \to 1$ is shown below.

- (a) Show that every split exact sequence of abelian groups is left split.
- (b) Show that if a short exact sequence is left split, then it is (right) split. Must G (the middle term) be abelian in this case? Justify your answer.
- (c) Give an example of a right split exact sequence that is not left split.
- 3. Let $C := \{aba^{-1}b^{-1} \mid a, b \in G\}$ be the set of commutators of a group G. Prove the following facts about the *commutator subgroup*, $G' = \langle C \rangle$.
 - (a) $G' = \bigcap_{C \subseteq N \trianglelefteq G} N.$
 - (b) $G' \trianglelefteq G$ and G/G' is abelian.
 - (c) If $G' \leq H \leq G$, then $H \leq G$.
 - (d) If $N \leq G$, then $N' \leq G$.
 - (e) If $\phi: G \twoheadrightarrow H$, then H is abelian if and only if $G' \leq \operatorname{Ker}(\phi)$.

4. Prove the following, where G is a finite group, p a prime divisor of |G|, and

$$G'(p) := \bigcap \{ N \leq G \mid G/N \text{ is an abelian } p\text{-group} \}.$$

- (a) G/G'(p) is an abelian *p*-group.
- (b) G/G'(p) is isomorphic to the unique Sylow *p*-subgroup of G/G'.
- (c) $p \nmid [G'(p) : G'].$
- (d) If P is any Sylow p-subgroup of G, then PG'(p) = G.
- 5. For both of the following groups shown below, find all compositions series (up to isomorphism), the composition factors, the derived series, and abelianization.

