1. The short five lemma says that given the commutative diagram of exact sequences shown at left, if ν and κ are isomorphisms, then γ is as well.

(a) Prove the short five lemma.
(b) Two extentions $N_{i} \stackrel{\iota_{i}}{\hookrightarrow} G_{i} \xrightarrow{\pi_{i}} Q_{i}$ are said to be equivalent if they are related via a commutative diagram, like the one above (left). Two extensions of Q by N are equivalent if they are related by a commutative diagram like the one on the right. Up to isomorphism, there are four extensions of $Q=V_{4}$ by $N=C_{2}$, as shown below.

However, up to equivalence, there are more than four. For example, finding all extesnions $C_{2} \stackrel{\iota}{\hookrightarrow} D_{4} \xrightarrow{\pi} V_{4}$ amounts to finding all $\gamma \in \operatorname{Aut}\left(D_{4}\right)$ that makes the diagram commute. Since each γ fixes the cosets $\left\{1, r^{2}\right\}$ and $\left\{r, r^{3}\right\}$, the following diagram illustrates two quotients that cannot be equivalent.

Each of the three choices of the image $\pi(r) \in\{h, v, h v\}$ characterizes an extension $C_{2} \stackrel{\iota}{\hookrightarrow} D_{4} \xrightarrow{\pi} V_{4}$. Examples of these are shown below.

Carry out the previous steps, including the visuals, to classify the extensions $C_{2} \stackrel{\iota}{\hookrightarrow}$ $C_{4} \times C_{2} \xrightarrow{\pi} V_{4}$, and then do the same for the extensions $C_{2} \stackrel{\iota}{\hookrightarrow} Q_{8} \xrightarrow{\pi} V_{4}$.
2. A short exact sequence of groups is left split if there is a "backwards map" $\alpha: G \rightarrow N$ for which $\alpha \circ \iota=\operatorname{Id}_{N}$, like the following shows.

$$
1 \longrightarrow N \underset{\substack{ \\ \\ \\\iota}}{\longrightarrow} H \xrightarrow{\pi}
$$

A picture of a left split exact sequence $1 \rightarrow V_{4} \rightarrow C_{6} \times C_{2} \rightarrow C_{3} \rightarrow 1$ is shown below.

(a) Show that every split exact sequence of abelian groups is left split.
(b) Show that if a short exact sequence is left split, then it is (right) split. Must G (the middle term) be abelian in this case? Justify your answer.
(c) Give an example of a right split exact sequence that is not left split.
3. Let $C:=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$ be the set of commutators of a group G. Prove the following facts about the commutator subgroup, $G^{\prime}=\langle C\rangle$.
(a) $G^{\prime}=\bigcap_{C \subseteq N \unlhd G} N$.
(b) $G^{\prime} \unlhd G$ and G / G^{\prime} is abelian.
(c) If $G^{\prime} \leq H \leq G$, then $H \unlhd G$.
(d) If $N \unlhd G$, then $N^{\prime} \unlhd G$.
(e) If $\phi: G \rightarrow H$, then H is abelian if and only if $G^{\prime} \leq \operatorname{Ker}(\phi)$.
4. Prove the following, where G is a finite group, p a prime divisor of $|G|$, and

$$
G^{\prime}(p):=\bigcap\{N \unlhd G \mid G / N \text { is an abelian } p \text {-group }\} \text {. }
$$

(a) $G / G^{\prime}(p)$ is an abelian p-group.
(b) $G / G^{\prime}(p)$ is isomorphic to the unique Sylow p-subgroup of G / G^{\prime}.
(c) $p \nmid\left[G^{\prime}(p): G^{\prime}\right]$.
(d) If P is any Sylow p-subgroup of G, then $P G^{\prime}(p)=G$.
5. For both of the following groups shown below, find all compositions series (up to isomorphism), the composition factors, the derived series, and abelianization.

Order $=40$

20

10
8

5
4

2

1

Index $=1$

