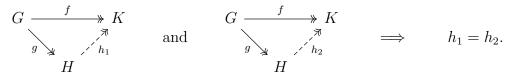
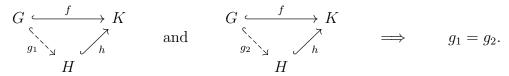
- 1. Consider homomorphisms $g_i : G \to H$ and $h_i : H \to K$ between groups, for i = 1, 2.
 - (a) Show that if g is surjective, then it right-cancels: $h_1 \circ g = h_2 \circ g \implies h_1 = h_2$.

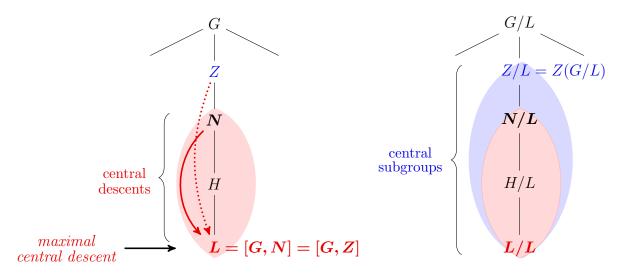


(b) Show that if h is injective, then it left-cancels: $h \circ g_1 = h \circ g_2 \implies g_1 = g_2$



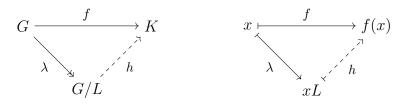
- (c) Give explicit examples to show how both of the previous results can fail if the hypotheses are not met.
- 2. We defined the ascending central series via iterative "maximal central descents." Given $N \subseteq G$, the maximal central descent [G, N] is characterized as being

"the smallest subgroup L such that N/L is central in G/L."

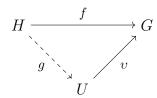


Prove that (L, λ) satisfies the following co-universal property, where L = [G, N] and $\lambda \colon G \twoheadrightarrow G/L$ is the canonical quotient.

"If $N \subseteq G$ and $f: G \to K$ for which f(N) is central, then f uniquely factors through the canonical quotient map $\lambda: G \to G/L$, where L = [G, N]. That is, there is a unique homomorphism $h: G/L \to K$ for which $f = h \circ \lambda$."



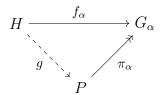
3. A universal pair (U, v) for a group G with respect to a particular property consists of a group U with an outgoing map $v: U \to G$, such that every other map $f: H \to G$ with that same property factors through v uniquely. That is, there is a unique homomorphism $g: H \to U$ between the domains such that $f = v \circ g$.



Prove that if G has a universal pair (U, v) with with respect to some property, then U is unique up to isomorphism.

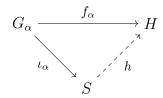
4. The product of $\{G_{\alpha} \mid \alpha \in I\}$ is a group P with a family of homomorphisms $\{\pi_{\alpha} \colon P \to G_{\alpha} \mid \alpha \in I\}$, satisfying the following universal property:

"Given any group H and homomorphisms $f_{\alpha} \colon H \to G_{\alpha}$, there is a unique homomorphism $g \colon H \to P$ such that $\pi_{\alpha} \circ g = f_{\alpha}$ for all $\alpha \in I$."



- (a) Show that $Z(\prod_{\alpha} G_{\alpha}) = \prod_{\alpha} Z(G_{\alpha})$.
- (b) Show that $(G_1 \times \cdots \times G_n)' = G_1' \times \cdots \times G_n'$.
- 5. The co-product of $\{G_{\alpha} \mid \alpha \in I\}$ is a group S with a family of homomorphisms $\{\iota_{\alpha} \colon G_{\alpha} \to S \mid \alpha \in I\}$, satisfying the following co-universal property:

"Given any group H and homomorphisms $f_{\alpha} \colon G_{\alpha} \to H$, there is a unique homomorphism $h \colon S \to H$ such that $h \circ \iota_{\alpha} = f_{\alpha}$ for all $\alpha \in I$."



- (a) Show that if a non-empty family of groups $\{G_{\alpha} \mid \alpha \in I\}$ has a co-product, then it is unique up to isomorphism, and each ι_{α} is injective.
- (b) Prove that the set of finite sums $\sum_{\alpha \in I} A_{\alpha}$ is a coproduct in the category of abelian groups, where ι_{α} are the canonical injections.