1. A Cayley graph of the projective linear group $PSL_2(\mathbb{Z}) = \langle A, B \rangle$ is shown below.

The generators are the images $A = \pi(ST)$ and $B = \pi(S)$ under the natural quotient map $\pi \colon \operatorname{SL}_2(\mathbb{Z}) \twoheadrightarrow \operatorname{PSL}_2(\mathbb{Z})$, where

$$S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad ST = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}.$$

Thus, we can think of them as $A = \pm S$ and $B = \pm ST$. In this problem, we will show that the identity element in $PSL_2(\mathbb{Z})$ cannot be written nontrivially as

$$I = A^{i_1} B^{j_1} A^{i_2} B^{j_2} \cdots A^{i_{m-1}} B^{j_{m-1}} A^{i_m}, \qquad i_k \in \{0, 1, 2\}, \quad j_k \in \{0, 1\}.$$

This will confirm that $PSL_2(\mathbb{Z}) \cong C_3 * C_2$, which is suggested by the Cayley graph above.

- (a) Show by slight brute force that this is impossible for m=1 and m=2.
- (b) Now, suppose there is such a representation of the identity, for some $m \geq 3$. Assuming that m is minimal, left-multiply by A^{-i_1} and right-multiply by A^{i_1} . Show that $i_m + i_0$ is not a multiple of 3, and conclude that the identity element can be written as a product of BA's and BA's.
- (c) Recalling that $A = \pm ST$ and $B = \pm S$, let R = ST, and consider the following matrices in $SL_2(\mathbb{Z})$:

$$SR = S^2T = -T = -\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad SR^2 = -TST = -\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Show that for any (nontrivial) product of these matrices, the absolute sum of the entries is at least 3.

(d) Conclude that the identity element in $PSL_2(\mathbb{Z})$ cannot be written nontrivially.

2. Consider the "mystery group" $M = \langle S_1 \mid R_1 \rangle$ defined by the following presentation.

$$M = \langle a, b, c \mid a^4, c^2, a^2b^{-2}, aba^{-1}b^{-1}, aca^{-1}c, a^2bc^{-1}b^{-1}c^{-1} \rangle.$$

The relators of this presentations describe the following motifs that a Cayley graph for $M = \langle a, b, c \rangle$ must have.

(a) Establish $|M| \leq 16$ by showing that every word in M can be written

$$a^i b^j c^k$$
, $i \in \{0, 1, 2, 3\}$, $j \in \{0, 1\}$, $k \in \{0, 1\}$,

- (b) Identify a "familiar group" $F = \langle S_2 \mid R_2 \rangle$ of order 16 whose generators satisfy these relations. That is, define a "relabing map" $\theta \colon S_1 \to S_2$ that extends to $\theta \colon R_1 \to R_2$.
- (c) Describe why it follows that $M \cong F$.
- 3. Prove what group is described by each presentation.

(a)
$$G = \langle a, b \mid a^2 = 1, b^3 = 1, ab = ba \rangle$$

(b)
$$G = \langle a, b \mid a^4 = 1, a^2 = b^2, ab = ba^3 \rangle$$

(c)
$$G = \langle a, b \mid a^4 = b^3 = 1, ab = ba^3 \rangle$$

(d)
$$G = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^3 = (ac)^2 = (bc)^3 = 1 \rangle$$
.

4. If A_1 , A_2 , and B are objects in a category C with morphisms $\alpha_i \in \operatorname{Hom}_{C}(A_i, B)$, then their fiber product (or pullback) is an object P with morphisms $\pi_i \in \operatorname{Hom}_{C}(P, A_i)$ such that the following property holds:

"For any object Q in C and morphisms $h_i \in \operatorname{Hom}_{C}(Q, A_i)$ such that if $\pi_1 \circ h_1 = \pi_2 \circ h_2$, there exists a unique morphism $h \in \operatorname{Hom}_{C}(Q, P)$ such that $h_i = \pi_i \circ h$ for i = 1, 2."

Prove that any two pullbacks are equivalent.

5. Let A, B_1 , B_2 be objects in a category C and let $\alpha_i \in \text{Hom}_{C}(A, B_i)$ for i = 1, 2. A fiber coproduct (or pushout) is an object C with morphisms $\iota_i \in \text{Hom}(B_i, C)$ satisfying the following couniversal property:

For any object $D \in \text{Ob}(\mathcal{C})$ and morphisms $h_i \in \text{Hom}_{\mathcal{C}}(B_i, D)$ such that if $h_1 \circ \alpha_1 = h_2 \circ \alpha_2$, there exists a unique $h \in \text{Hom}_{\mathcal{C}}(C, D)$ such that $h \circ \iota_i = h_i$.

Let Y and Z be sets with inclusion maps $\alpha_Y \colon Y \cap Z \hookrightarrow Y$ and $\alpha_Z \colon Y \cap Z \hookrightarrow Z$. Show that the pushout (or fiber coproduct) of α_Y and α_Z is equivalent to the union $Y \cup Z$, as illustrated by the following commutative diagram.

