1. A Cayley graph of the projective linear group $\mathrm{PSL}_{2}(\mathbb{Z})=\langle A, B\rangle$ is shown below.

The generators are the images $A=\pi(S T)$ and $B=\pi(S)$ under the natural quotient map $\pi: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{PSL}_{2}(\mathbb{Z})$, where

$$
S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right], \quad S T=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]
$$

Thus, we can think of them as $A= \pm S$ and $B= \pm S T$. In this problem, we will show that the identity element in $\mathrm{PSL}_{2}(\mathbb{Z})$ cannot be written nontrivially as

$$
I=A^{i_{1}} B^{j_{1}} A^{i_{2}} B^{j_{2}} \cdots A^{i_{m-1}} B^{j_{m-1}} A^{i_{m}}, \quad i_{k} \in\{0,1,2\}, \quad j_{k} \in\{0,1\} .
$$

This will confirm that $\mathrm{PSL}_{2}(\mathbb{Z}) \cong C_{3} * C_{2}$, which is suggested by the Cayley graph above.
(a) Show by slight brute force that this is impossible for $m=1$ and $m=2$.
(b) Now, suppose there is such a representation of the idenitity, for some $m \geq 3$. Assuming that m is minimal, left-multiply by $A^{-i_{1}}$ and right-multiply by $A^{i_{1}}$. Show that $i_{m}+i_{0}$ is not a multiple of 3 , and conclude that the identity element can be written as a product of $B A$'s and $B A^{2}$'s.
(c) Recalling that $A= \pm S T$ and $B= \pm S$, let $R=S T$, and consider the following matrices in $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
S R=S^{2} T=-T=-\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad S R^{2}=-T S T=-\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Show that for any (nontrivial) product of these matrices, the absolute sum of the entries is at least 3.
(d) Conclude that the identity element in $\mathrm{PSL}_{2}(\mathbb{Z})$ cannot be written nontrivially.
2. Consider the "mystery group" $M=\left\langle S_{1} \mid R_{1}\right\rangle$ defined by the following presentation.

$$
M=\left\langle a, b, c \mid a^{4}, c^{2}, a^{2} b^{-2}, a b a^{-1} b^{-1}, a c a^{-1} c, a^{2} b c^{-1} b^{-1} c^{-1}\right\rangle .
$$

The relators of this presentations describe the following motifs that a Cayley graph for $M=\langle a, b, c\rangle$ must have.

$a^{4}=1 \quad c^{2}=1$

$a^{2}=b^{2}$

$a b=b a$

$a c=c a$

$a^{2} b=c b c$
(a) Establish $|M| \leq 16$ by showing that every word in M can be written

$$
a^{i} b^{j} c^{k}, \quad i \in\{0,1,2,3\}, \quad j \in\{0,1\}, \quad k \in\{0,1\},
$$

(b) Identify a "familiar group" $F=\left\langle S_{2} \mid R_{2}\right\rangle$ of order 16 whose generators satisfy these relations. That is, define a "relabing map" $\theta: S_{1} \rightarrow S_{2}$ that extends to $\theta: R_{1} \rightarrow R_{2}$.
(c) Describe why it follows that $M \cong F$.
3. Prove what group is described by each presentation.
(a) $G=\left\langle a, b \mid a^{2}=1, b^{3}=1, a b=b a\right\rangle$
(b) $G=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a b=b a^{3}\right\rangle$
(c) $G=\left\langle a, b \mid a^{4}=b^{3}=1, a b=b a^{3}\right\rangle$
(d) $G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{3}=(a c)^{2}=(b c)^{3}=1\right\rangle$.
4. If A_{1}, A_{2}, and B are objects in a category \mathcal{C} with morphisms $\alpha_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A_{i}, B\right)$, then their fiber product (or pullback) is an object P with morphisms $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(P, A_{i}\right)$ such that the following property holds:
"For any object Q in \mathcal{C} and morphisms $h_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(Q, A_{i}\right)$ such that if $\pi_{1} \circ h_{1}=$ $\pi_{2} \circ h_{2}$, there exists a unique morphism $h \in \operatorname{Hom}_{\mathcal{C}}(Q, P)$ such that $h_{i}=\pi_{i} \circ h$ for $i=1,2$."

Prove that any two pullbacks are equivalent.
5. Let A, B_{1}, B_{2} be objects in a category \mathcal{C} and let $\alpha_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A, B_{i}\right)$ for $i=1,2$. A fiber coproduct (or pushout) is an object C with morphisms $\iota_{i} \in \operatorname{Hom}\left(B_{i}, C\right)$ satisfying the following couniversal property:

For any object $D \in \operatorname{Ob}(\mathcal{C})$ and morphisms $h_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(B_{i}, D\right)$ such that if $h_{1} \circ \alpha_{1}=h_{2} \circ \alpha_{2}$, there exists a unique $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$ such that $h \circ \iota_{i}=h_{i}$.

Let Y and Z be sets with inclusion maps $\alpha_{Y}: Y \cap Z \hookrightarrow Y$ and $\alpha_{Z}: Y \cap Z \hookrightarrow Z$. Show that the pushout (or fiber coproduct) of α_{Y} and α_{Z} is equivalent to the union $Y \cup Z$, as illustrated by the following commutative diagram.

