1. Let I and J be ideals of a commutative ring R.
(a) Show that $I+J, I \cap J$, and $I J$ are ideals of R. Which of these remain ideals if the commutativity hypothesis is dropped?
(b) The set $(I: J):=\{r \in R \mid r J \subseteq I\}$ is called the ideal quotient or colon ideal of I and J. Show that $(I: J)$ is an ideal of R. Does this require commutativity?
(c) Determine $I+J, I \cap J, I J$, and $(I: J)$ for the ideals $I=n \mathbb{Z}$ and $J=m \mathbb{Z}$ of $R=\mathbb{Z}$.
(d) Repeat Part (c) for several pairs of ideals of $R=\mathbb{Z}_{6} \times \mathbb{Z}_{4}$, whose subring lattice is shown below.
(e) Describe how to find $I J$ and $(I: J)$ by inspection, using only the subring lattice, if possible.

2. Let $f: R \rightarrow S$ be a ring homomorphism between commutative rings.
(a) If f is surjective and I is an ideal of R, show that $f(I)$ is an ideal of S.
(b) Show that Part (a) is not true in general when f is not surjective.
(c) Show that if f is surjective and R is a field, then S is a field as well.
3. Let R be a commutative ring.
(a) Show that if x is contained in every maximal ideal, then $1+x$ is a unit.
(b) A ring is local if it has a unique maximal ideal. Show that R is local if and only if the non-units form an ideal.
(c) Characterize units and maximal ideals of the ring

$$
R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z},(a, b)=1, p \nmid b\right\} \subseteq \mathbb{Q}
$$

where p is a fixed prime.
4. Let R be a commutative ring. In this problem, we will define several different "radicals" of an ideal I.
(a) The radical of $I \subseteq R$ is the set

$$
\sqrt{I}:=\left\{x \in R \mid x^{n} \in I \text { for some } n \in \mathbb{N}\right\},
$$

and I is a radical ideal if $\sqrt{I}=I$.
(i) Show that \sqrt{I} is an ideal containing I.
(ii) Find the radicals of all ideals of the rings $\mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{24}. Denote these on the subring lattices by drawing an arrow from each I to \sqrt{I}.
(b) The Jacobsen radical of I, denoted $J(I)$, is the intersection of all maximal ideals that contain I.
(i) Show that $J(I)$ is an ideal.
(ii) Find the Jacobsen radical of all proper ideals of the rings $\mathbb{Z}_{24}, \mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$. Denote these by drawing an arrow from I to $J(I)$ on a fresh copy of the lattices.

5. Let R be commutative. Loosely speaking, a radical of R is an ideal of "bad elements."
(a) An element $a \in R$ is nilpotent if $a^{n}=0$ for some $n \geq 1$. The nilradical of R is $\mathfrak{N}_{R}:=\sqrt{0}$, the set of nilpotent elements.
(i) If $u \in R$ is a unit and $a \in R$ is nilpotent, show that $u+a$ is a unit.
(ii) Show that R / \mathfrak{N}_{R} has no nonzero nilpotent elements.
(iii) Show that $\mathfrak{N}_{R / I}=\sqrt{I} / I$.
(b) The Jacobsen radical of R is $J(R):=J(0)$, the intersection of all maximal ideals. Show that $J(R) \supseteq \mathfrak{N}_{R}$.
(c) Find the Jacobsen and nilradicals of the rings $\mathbb{Z}_{24}, \mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$. Beside each ideal I in the lattice, write $\mathfrak{N}_{R / I}$.

