1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(x^2 + x + 2)$. Examples for the finite fields

$$\mathbb{F}_4 \cong \mathbb{Z}_2[x]/(x^2 + x + 1)$$
 and $\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(x^3 + x + 1)$

are shown below.

 \times

1

x

x+1

1

1

x

x+1

x

x

x+1

1

x+1

x+1

1

x

×		1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	x ² +x+1
1		1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	x ² +x+1
x		x	x^2	$x^2 + x$	x+1	1	x ² +x+1	$x^2 + 1$
x+	1	x+1	$x^2 + x$	$x^2 + 1$	x ² +x+1	x^2	1	x
x^2		x^2	x+1	$x^{2}+x+1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 +$	1	$x^2 + 1$	1	x^2	x	x ² +x+1	x+1	$x^2 + x$
$x^{2}+$	$\cdot x$	$x^2 + x$	x ² +x+1	1	$x^2 + 1$	x+1	x	x^2
x ² +x-	+1	x ² +x+1	$x^2 + 1$	x	1	$x^2 + x$	x^2	x + 1

Math 8510 | Abstract Algebra | Fall 2022 | M. Macauley

- 2. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1/2 \notin A$.
- 3. Let R be a commutative ring with 1. The *radical* of an ideal $I \subseteq R$ is the set

$$\sqrt{I} = \{ x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N} \},\$$

and I is a radical ideal if $I = \sqrt{I}$. An ideal $I \subsetneq R$ is primary if $ab \in I$ implies $a \in I$ or $b^n \in I$ for some $n \in \mathbb{N}$.

- (a) Show that an ideal I is prime if and only if it is primary and radical.
- (b) Characterize the radical of a primary ideal.
- (c) Suppose that R is a PID. Characterize its nonzero primary ideals.
- (d) Show that I is primary if and only if all zero-divisors in R/I are nilpotent.
- (e) Give an example to show that, in general, there are primary ideals which are not prime powers.
- 4. Let R be commutative ring. For a multiplictive semigroup $D \subseteq R$ containing no zero divisors, let $\mathcal{F} = R \times D$ and define a relation on \mathcal{F} where $(a, b) \sim (c, d)$ if ad = bc.
 - (a) Show that \sim is an equivalence relation on \mathcal{F} .
 - (b) Denote the equivalence class of (a, b) by a/b and the set of equivalence classes by $D^{-1}R$ (called the *localization* of R at D). Show that $D^{-1}R$ is a commutative ring with 1.
 - (c) If $a \in S$, show that $\{ra/a \mid r \in R\}$ is a subring of $D^{-1}R$ and that $r \mapsto ra/a$ is a monomorphism, therefy identifying R with a subring of $D^{-1}R$.
 - (d) Under this identification, show that every $d \in D$ is a unit in $D^{-1}R$.
 - (e) State and prove a "co-universal" definition for $D^{-1}R$.
- 5. Let R be an integral domain and $P \subseteq R$ a prime ideal.
 - (a) Show that both P and $R \setminus P$ are multiplicative semigroups.
 - (b) Let $R_P := D^{-1}R$ be the ring of fractions for $D = R \setminus P$. Show that $U(R_P) = R_P \setminus R_P P$. Conclude that $R_P P$ is the unique maximal ideal in R_D .
 - (c) Describe this construction for the prime ideal $(p) \subseteq \mathbb{Z}$, and then for $(x) \subseteq \mathbb{Z}[x]$.