1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_{9} \cong$ $\mathbb{Z}_{3}[x] /\left(x^{2}+x+2\right)$. Examples for the finite fields

$$
\mathbb{F}_{4} \cong \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \quad \text { and } \quad \mathbb{F}_{8} \cong \mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)
$$

are shown below.

2. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1 / 2 \notin A$.
3. Let R be a commutative ring with 1 . The radical of an ideal $I \subseteq R$ is the set

$$
\sqrt{I}=\left\{x \in R \mid x^{n} \in I \text { for some } n \in \mathbb{N}\right\}
$$

and I is a radical ideal if $I=\sqrt{I}$. An ideal $I \subsetneq R$ is primary if $a b \in I$ implies $a \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$.
(a) Show that an ideal I is prime if and only if it is primary and radical.
(b) Characterize the radical of a primary ideal.
(c) Suppose that R is a PID. Characterize its nonzero primary ideals.
(d) Show that I is primary if and only if all zero-divisors in R / I are nilpotent.
(e) Give an example to show that, in general, there are primary ideals which are not prime powers.
4. Let R be commutative ring. For a multiplictive semigroup $D \subseteq R$ containing no zero divisors, let $\mathcal{F}=R \times D$ and define a relation on \mathcal{F} where $(a, b) \sim(c, d)$ if $a d=b c$.
(a) Show that \sim is an equivalence relation on \mathcal{F}.
(b) Denote the equivalence class of (a, b) by a / b and the set of equivalence classes by $D^{-1} R$ (called the localization of R at D). Show that $D^{-1} R$ is a commutative ring with 1 .
(c) If $a \in S$, show that $\{r a / a \mid r \in R\}$ is a subring of $D^{-1} R$ and that $r \mapsto r a / a$ is a monomorphism, therefy identifying R with a subring of $D^{-1} R$.
(d) Under this identification, show that every $d \in D$ is a unit in $D^{-1} R$.
(e) State and prove a "co-universal" definition for $D^{-1} R$.
5. Let R be an integral domain and $P \subseteq R$ a prime ideal.
(a) Show that both P and $R \backslash P$ are multiplicative semigroups.
(b) Let $R_{P}:=D^{-1} R$ be the ring of fractions for $D=R \backslash P$. Show that $U\left(R_{P}\right)=$ $R_{P} \backslash R_{P} P$. Conclude that $R_{P} P$ is the unique maximal ideal in R_{D}.
(c) Describe this construction for the prime ideal $(p) \subseteq \mathbb{Z}$, and then for $(x) \subseteq \mathbb{Z}[x]$.

