1. A picture illustrating the quadratic integers $R_{-5} = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} is shown below, with the primes in black, and non-prime irreducibles in red.

- (a) Create an analogous picture for the ring R_{-6} . Start with a blank diagram with the norms of the quadratic integers labeled at each corresponding lattice point.
- (b) Give an elementary characterization of non-prime irreducibles.
- 2. Consider the quadratic field $K = \mathbb{Q}(\sqrt{m})$ and an odd prime $p \in \mathbb{Z}$.
 - (a) Show that if $p \mid m$, then p is ramified in R_m , by establishing

$$(p) = \left(p, \sqrt{m}\right)^2.$$

(b) Show that if $p \nmid m$ and $m \equiv n^2 \pmod{p}$, then p splits in R_m , via

$$(p) = \left(p, n + \sqrt{m}\right)\left(p, n - \sqrt{m}\right)$$

(c) Show that if $p \nmid m$ and m is not a quadradic residue mod p, then $R_m/(p)$ is a field, and hence p is inert in R_m .

- 3. Prove that if m = -3, -7, or -11, then R_m is Euclidean with d(r) = |N(r)| for all nonzero $r \in R_m$. [*Hint*: Mimic the proof of the same result for m = -2, -1, 2, and 3, but choose $d \in \mathbb{Z}$ nearest to 2t and then $c \in \mathbb{Z}$ so that c is as near to 2s as possible with $c \equiv d \pmod{2}$, then set $q = (c + d\sqrt{m})/2$.]
- 4. Suppose $P \neq 0$ is a prime ideal in the ring R_m of quadratic integers.
 - (a) Show that $P \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z} , so $P \cap \mathbb{Z} = (p)$ for some prime p in \mathbb{Z} .
 - (b) Set $I = pR_m \subseteq P$ and form the quotient ring R/I. Show that R/I, as an additive group, is generated by two elements of finite order; hence R/I is finite.
 - (c) Show that there is an epimorphism $R/I \rightarrow R/P$ and conclude that R/P is finite.
 - (d) Conclude that every prime ideal in R_m is maximal.
- 5. An element $e \in R$ is called an *idempotent* if $e^2 = e$, and two nonzero idempotents e_1, e_2 are called an *orthogonal pair* if $e_1 + e_2 = 1$ and $e_1e_2 = 0$.
 - (a) Show that the following are equivalent:
 - (i) R contains an idempotent different from 0 and 1.
 - (ii) R contains an orthogonal pair of idempotents.
 - (iii) $R \cong R_1 \times R_2$ for some rings R_1 and R_2 .
 - (b) Give an example of a non-orthogonal pair of distinct idemponents.
 - (c) Find all idempotents in the ring $\mathbb{Z}/20\mathbb{Z}$.