1. A picture illustrating the quadratic integers $R_{-5}=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} is shown below, with the primes in black, and non-prime irreducibles in red.

(a) Create an analogous picture for the ring R_{-6}. Start with a blank diagram with the norms of the quadratic integers labeled at each correponding lattice point.
(b) Give an elementary characterization of non-prime irreducibles.
2. Consider the quadratic field $K=\mathbb{Q}(\sqrt{m})$ and an odd prime $p \in \mathbb{Z}$.
(a) Show that if $p \mid m$, then p is ramified in R_{m}, by establishing

$$
(p)=(p, \sqrt{m})^{2} .
$$

(b) Show that if $p \nmid m$ and $m \equiv n^{2}(\bmod p)$, then p splits in R_{m}, via

$$
(p)=(p, n+\sqrt{m})(p, n-\sqrt{m}) .
$$

(c) Show that if $p \nmid m$ and m is not a quadradic residue $\bmod p$, then $R_{m} /(p)$ is a field, and hence p is inert in R_{m}.
3. Prove that if $m=-3,-7$, or -11 , then R_{m} is Euclidean with $d(r)=|N(r)|$ for all nonzero $r \in R_{m}$. [Hint: Mimic the proof of the same result for $m=-2,-1,2$, and 3 , but choose $d \in \mathbb{Z}$ nearest to $2 t$ and then $c \in \mathbb{Z}$ so that c is as near to $2 s$ as possible with $c \equiv d(\bmod 2)$, then set $q=(c+d \sqrt{m}) / 2$.]
4. Suppose $P \neq 0$ is a prime ideal in the ring R_{m} of quadratic integers.
(a) Show that $P \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z}, so $P \cap \mathbb{Z}=(p)$ for some prime p in \mathbb{Z}.
(b) Set $I=p R_{m} \subseteq P$ and form the quotient ring R / I. Show that R / I, as an additive group, is generated by two elements of finite order; hence R / I is finite.
(c) Show that there is an epimorphism $R / I \rightarrow R / P$ and conclude that R / P is finite.
(d) Conclude that every prime ideal in R_{m} is maximal.
5. An element $e \in R$ is called an idempotent if $e^{2}=e$, and two nonzero idempotents e_{1}, e_{2} are called an orthogonal pair if $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$.
(a) Show that the following are equivalent:
(i) R contains an idempotent different from 0 and 1.
(ii) R contains an orthogonal pair of idempotents.
(iii) $R \cong R_{1} \times R_{2}$ for some rings R_{1} and R_{2}.
(b) Give an example of a non-orthogonal pair of distinct idemponents.
(c) Find all idempotents in the ring $\mathbb{Z} / 20 \mathbb{Z}$.

