1. (a) Solve the congruences

$$
x \equiv 1 \quad(\bmod 8), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 9 \quad(\bmod 11)
$$

simultaneously for x in the ring \mathbb{Z} of integers.
(b) Solve the congruences

$$
x \equiv i \quad(\bmod i+1), \quad x \equiv 1 \quad(\bmod 2-i), \quad x \equiv 1+i \quad(\bmod 3+4 i)
$$

simultaneously for x in the ring R_{-1} of Gaussian integers.
(c) Solve the congruences
$f(x) \equiv 1 \quad(\bmod x-1), \quad f(x) \equiv x \quad\left(\bmod x^{2}+1\right), \quad f(x) \equiv x^{3} \quad(\bmod x+1)$ simultaneously for $f(x)$ in $F[x]$, where F is a field in which $1+1 \neq 0$.

2 . Let R be a commutative ring with identity and \mathbb{F} a field.
(a) Show that if R is a PID then any nonzero prime ideal $P \subseteq R$ is a maximal.
(b) Show that there is a bijective correspondence between maximal ideals of $\mathbb{F}[x]$ and monic irreducible polynomials in $\mathbb{F}[x]$.
(c) Show that if $M \subsetneq \mathbb{Z}[x]$ is a maximal ideal, then $M \bigcap \mathbb{Z}=(p)$ for some prime $p \neq 0$.
(d) Show that there is a bijective correspondence between maximal ideals of $\mathbb{Z}[x]$ that contain p and monic irreducible polynomials in $\mathbb{Z}_{p}[x]$.
(e) Characterize all maximal ideals of $\mathbb{Z}[x]$.
3. Consider the following rings R_{i}, for $i=1, \ldots, 6$, which are additionally \mathbb{C}-vector spaces:

$$
\begin{aligned}
& R_{1}=\mathbb{C}[x] /\left(x^{3}-1\right) \\
& R_{2}=\mathbb{C} \times \mathbb{C} \times \mathbb{C} \\
& R_{3}=\text { the ring of upper triangular } 2 \times 2 \text { matrices over } \mathbb{C} \\
& R_{4}=\mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i) \\
& R_{5}=\mathbb{C}[x] /\left(x^{2}+1\right) \times \mathbb{C}[x] /(x-1) \\
& R_{6}=\mathbb{C}[x] /(x+1)^{2} \times \mathbb{C}[x] /(x-1) .
\end{aligned}
$$

(a) Compute the dimension of each R_{i} as a \mathbb{C}-vector space by giving an explicit basis.
(b) Partition the rings R_{1}, \ldots, R_{6} into isomorphism classes.
4. For a fixed $a \in R$, denote the polynomial evaluation map by

$$
\phi_{a}: R[x] \longrightarrow R, \quad \phi_{a}: f(x) \longmapsto f(a) .
$$

(a) If $I=\left(3, x^{2}+1\right)$ in $\mathbb{Z}[x]$, show that $\phi_{a}(I)=\mathbb{Z}$.
(b) Show by example how Part (c) can fail if 3 is replaced with a different odd prime p.
(c) Given a polynomal, $f(x) \in R[x]$, substituting $a \in R$ for x determines a polynomial function $f: R \rightarrow R$, where $a \mapsto f(a)$. Show that if R is an infinite integral domain, then the mapping $f(x) \mapsto f$ assiging to each polynomial in $R[x]$ to its corresponding polynomial function is $1-1$.

